共查询到19条相似文献,搜索用时 62 毫秒
1.
基于MEMD的运动想象脑电信号的特征提取与分析 总被引:1,自引:0,他引:1
对于传统特征提取算法对运动想象脑电信号识别能力不足的问题,采用多元经验模式分解(multivariate empirical mode decomposition,MEMD)的方法用于分析运动想象的脑电信号.目前此方法主要应用在股票收益与宏观经济关系分析上,MEMD将标准经验模式拓展到多通道信号处理,适合于分析多元时间序列,并能够同时处理多通道的多尺度分解,进而在不同尺度下对多元时间序列的时间频率特性进行比较.通过Emotiv传感器对自定义的左右运动想象任务采集数据,采用MEMD提取相关脑电特征的边际谱,使用支持向量机对相关特征量进行分类.实验表明,此方法增强了定位脑电信号的频率信息的准确性,能够有效地提高对脑电信号的识别能力. 相似文献
2.
理论分析并结合实验验证指出基于正定核的独立分量分析算法(K ICA)的优化与分离性能与其模型参数的选择有关。提出了一种简单高效的模型选择方法:在混合信号中附加一个已知验证信号,通过最小化该已知信号的分离误差来选择最优模型参数。实验结果表明:经模型选择后的K ICA能成功分离脑电信号中的心电伪差。 相似文献
3.
癫痫脑电的分类识别能够为癫痫的预警和病程的发展监测提供强有力的技术支持.传统的癫痫脑电分类识别方法需要从较长的时间序列中提取特征,难以刻画大脑的瞬态变化,检测低效且耗时,降低了癫痫预警的有效性.针对上述问题,提出一种基于隐马尔科夫模型的癫痫脑电分类算法.该方法通过时延嵌入式隐马尔科夫模型(time-delay embedded hidden Markov model,TDE-HMM)对脑电进行状态估计,并提取状态序列中的状态切换特征,通过多层感知机(multiple layer perceptron,MLP)实现对不同癫痫发作阶段脑电的有效辨识.实验结果表明,相较于小波变换、微分熵等传统特征,所提方法准确率高,能够有效刻画癫痫不同阶段的大脑状态变化,为癫痫脑电的分类识别和状态分析提供了新的备选方案. 相似文献
4.
脑电信号(electroencephalograph,EEG)由于自身信号微弱且容易受到周边环境和大脑内部其他活动的影响,对其进行特征分类并提高分类准确率这一问题一直是脑机接口领域的难点。传统的基于支持向量机(support vector machines, SVM)的脑电信号特征分类方法在选取惩罚参数与核函数参数时大都只是采用经验数据,而忽略了参数优化对提升SVM分类效果重要性,而现有的参数优化方法计算复杂严重影响了分类效率。针对以上问题,提出了一种通过交叉检验和LOO误差上界对C SVM中的惩罚参数C和核函数参数进行优化的方法,并在理论分析的基础上结合实验证明了参数优化后的分类方法能够有效提高脑电信号分类的准确率且对分类效率影响不大。 相似文献
5.
6.
应用多分辨率小波变换提取脑电信号异常节律 总被引:4,自引:1,他引:4
脑电信号是非平稳的随机信号,其中包含了大量的生理和疾病信息,对于医生判断脑都是否有器质性的病变具有重要作用。因此对脑电信号的分析和处理一直是人们努力研究的领域。考虑到小波变换良好的时频局部化特性,利用多分辨率小波变换方法来实现脑电信号异常节律的提取,脑电信号经多分辨率小波变换后所得到的各个尺度的信号不仅反映了信号的频率信息,即尺度越大,对应信号的频率越低,同时也反映了信号的时间信息,即反映此时的EEG状态,实验结果表明,选择合适的小波基,可以有效地提取脑电信号中的异常节律。 相似文献
7.
针对运动想象脑电信号(EEG)识别中信号随时间的结构动态变化与网络分离整合过程被忽视等问题,提出一种基于多层时变功能脑网络的运动想象特征提取方法.本方法截取运动想象有效片段投入EEGLAB进行信号预处理;依据滑动窗口方法,设定合适长度与步长,将信号分成连续且部分重叠的时间窗口,将时间窗口截获的脑电数据生成多个脑网络,以节点间锁相值构建多层时变网络模型.首先通过多层时变网络不同层的网络拓扑分析与层间相似度量指标自适应确定其中核心网络层,提取其节点度和聚类系数用以描述网络空间功能连接;然后结合多层参与系数和多层聚类系数,描述脑电信号网络动态变化与分离整合特征,并组合两者成为多层时变脑功能网络特征向量,完成运动想象识别任务.用支持向量机识别的结果表明:基于所构建的网络特征向量分类准确率高达89.14%,高出对比所用的单层网络特征6.61%. 相似文献
8.
基于P300事件相关电位的脑机接口(BCI)系统中,有效的P300特征提取及分类是系统开展后续工作的关键。应用时间序列自回归(AR)模型及支持向量机(SVM)算法对脑电信号进行P300分类;对10导联脑电数据分别分段,并对每段建立AR模型;采用最小二乘法进行AR模型系数估计,由估计出的系数序列构成特征向量,送入SVM进行模式分类。实验针对BCI Competition Ⅲ dataset Ⅱ数据集进行了方法验证,提出的方法在15试次情况下识别正确率达93.5%。实验及数据分析结果表明,应用SVM分类器对AR模型提取出的系数序列特征向量进行分类,具有较好的系统识别正确率,可为实现基于P300的BCI系统实际应用奠定理论和实验基础。 相似文献
9.
目前基于脑机接口的脑电信号研究得到越来越广泛的关注,然而传统脑电信号采集需要使用电极帽并涂抹胶泥膏而不被大多数用户所接受。因此,将研究使用无需涂抹胶泥膏的独立电极采集脑电信号,然而使用独立电极采集脑电信号容易出现干扰大、信号不稳定等缺陷。为了快速有效提取脑电信号特征并克服独立电极采集脑电信号的缺陷,将采用低通滤波方法进行工频干扰的滤除,利用独立成分分析(ICA)实现脑电信号中的眼电伪迹分离,并在此基础上通过设置水平眼电和垂直眼电阈值以及各个独立成分在脑部位置的空间分布特性实现眼电伪迹的识别。最后,分别利用β波能量以及样本熵来衡量人脑专注度的高低,仿真结果表明两者均与专注度成正相关,实验以Neuro Sky专注度为基准,将两种算法分别与其进行对照。此外,样本熵与Neuro Sky算法的相关度比β波能量法提高了26%,说明样本熵专注度提取算法更能精确跟踪人脑注意力的变化,对脑电信号专注度的衡量与实际更加吻合。 相似文献
10.
围绕基于脑电信号的驾驶疲劳检测,通过大量文献检索,总结了脑电信号采集设备、脑电信号特征提取方法和脑电信号分类方法三个方面现状.分析了采集设备的便携性与舒适度问题、与疲劳相关特征的稳定性问题及疲劳检测模型的鲁棒性问题,进而梳理并总结出基于脑电信号驾驶疲劳检测的三个发展趋势:从湿式电极到干式电极;从通道内特征到通道间特征;从浅层机器学习到深度学习. 相似文献
11.
使用Choi-Williams分布对一段睡眠脑电图(EEG)信号进行时频变换,利用局部频谱的特征估计各个时间间隔里的波形,并得到局部频谱的特征曲线,整段EEG信号中所有时间咪上的频谱特征曲线组成一种时频特征图,使用该时频特征图分析睡眠EEG,不仅能够统计该段EEG信号中各种基本波形的出现情况,而且可以观察EEG信号中每个基本波形的变化方式,通过时频特征图对采集的实际睡眠EEG数据进行分阶实验,结果表明,时频特征图可以作为一种分析睡眠EFG有效工具,有良好的应用前景。 相似文献
12.
为了理解酗酒对大脑功能的影响,已有研究多数是对被试者的脑电各节律特性分别进行分析,而缺乏分布特性研究.通过3种不同类型的实验,对酗酒者和正常对照组的脑电节律能量的头皮分布进行深入分析.结果表明,在3种不同认知任务下,酗酒者的α节律、δ节律和θ节律在枕区的能量都显著低于正常对照组;而酗酒者脑电β和γ节律在额区与颞区的能量显著高于正常对照组.不同的实验任务对各节律影响也不尽相同.α节律随着任务的不同,能量大小发生变化;枕区的θ节律、额区和颞区的δ节律能量分布在不同任务条件下也各不相同;而β能量则不受实验任务的影响.不同实验类型下酗酒者额区的脑电γ能量有所不同,而正常人却没有显著变化.因此慢波节律在不同区域能量的降低和快波节律在不同脑区能量的增加可能表明酒精长期作用会对大脑造成一定程度的损伤,进而影响大脑的认知过程,而且这种影响还通过皮层电活动头皮分布特性的不同得以体现. 相似文献
13.
疲劳驾驶时,司机的脑电信号和眼电信号特征均发生显著变化,本文针对这两类信号进行分析研究,利用这两类数据综合分析判断司机是否处于疲劳驾驶状态.首先对采集的脑电信号进行小波包分解,提取信号中的α波,并计算其相对功率谱P;然后利用Pearson相关系数分析两路对称导联F7,F8中眨眼信号特征,去除干扰;最后利用BP神经元网络对眨眼信号进行识别,计算眨眼频率.结果表明,利用眼电信号和脑电信号特征综合分析司机眨眼动作,能准确识别出眨眼信号,并能正确检测人的驾驶疲劳状态的变化. 相似文献
14.
探讨性格行为特征和脑电特征之间的关系.在克莱佩林-内田测试(UK测试)过程中同时测量实验者的脑电,根据UK测试对实验者性格行为的3个特征即启动性、兴奋性和可变性的评价结果,分析对比不同性格行为特征的实验者的脑电数据,通过对比特定频段的脑电能量在UK测试过程中的分布情况,探讨实验者性格行为特征与脑电特征之间的关系.结果表明:实验者代表性格启动性的特征主要与UK测试上下半时开始时脑电β波的能量大小相关;代表性格可变性特征主要表现在UK测试过程中脑电β波能量的波动大小;代表性格兴奋性的特征则表现在脑电α波能量的大小和变化趋势. 相似文献
15.
为了实现脑-计算机接口(BCI)系统,对运动想象脑电信号的特征进行了提取和分类.将大脑C3,C4处采集的二路运动想象脑电信号分成4段,分别建立六阶AR参数模型进行功率谱估计,再对每段数据的功率谱求和构造特征矢量,提供给误差反向传播算法进行左右手运动想象脑电模式分类.结果表明,该方法提取的特征向量较好地反应了运动想象脑电信号的事件相关去同步(ERD)和事件相关同步(ERS)的变化时程.另外,该方法识别率高,复杂性低,适合在线脑-计算机接口的应用. 相似文献
16.
研究疲劳驾驶时的脑电特性.利用汽车模拟驾驶系统模拟驾驶员疲劳驾驶的情况,用脑电仪记录驾驶员的脑电情况,得到了驾驶员在正常状态和疲劳状态下驾驶时的脑电数据和波形,分别用平均功率谱方法和非线性的关联维数方法对所得数据进行分析.得到了疲劳驾驶时脑电的2个特征量R和D.可以用驾驶员驾驶时的脑电特征量来评价其疲劳程度. 相似文献
17.
情绪在人们的思考、行为和交流方式中起着重要作用。为提高脑电信号的情绪识别准确率,充分利用脑电信号的频率、空间和时间维度上的信息,提出一种基于CNN-BiLSTM(convolutional neural networks-bidrectional long short term memory)的脑电情绪分类神经网络模型。该模型由卷积神经网络和多层特征融合的双向长短时神经网络构成,卷积神经网络用于学习脑电信号的频率和空间特征,双向长短时神经网络则从卷积神经网络的输出中挖掘脑电切片之间的时序信息。借助离散情绪模型的SEED(sjtu emotion eeg dataset)数据集和连续情绪模型的DEAP(database for emotion analysis using physiological signals)数据集来进行情绪分类实验。实验结果表明,在SEED和DEAP两个数据集上,CNN-BiLSTM模型均取得了目前最好的情绪分类性能。此外,该模型的时序信息挖掘模块性能优于单层长短时神经网络,能够学习更多的时序信息。 相似文献
18.
研究利用脑电信号(EEG)判断驾驶员的疲劳程度. 基于疲劳驾驶实验平台进行模拟驾驶实验,综合实验视频图像和驾驶员自我评价进行主观疲劳评测. 利用生理检测仪采集驾驶员的脑电波,对比分析脑电信号不同频带信号功率谱值和驾驶员的主观疲劳评测之间的关系. 结果表明:主观疲劳评测与脑电信号中功率谱值的变化相对应,脑电功率谱的比值(α+θ)/β越大,疲劳等级越高. 相似文献
19.
基于颈腰部肌电及脑电信号的疲劳驾驶检测 总被引:1,自引:0,他引:1
为了有效判别驾驶员的疲劳状态,结合生物力学分析提取了驾驶过程中的颈腰部肌电信号EMG和头部脑电信号EEG,并分析其特征参数在驾驶过程中的变化规律.结果表明:颈肌样本熵、颈肌复杂度、腰肌样本熵、腰肌复杂度、脑电样本熵、脑电复杂度这6个生理信号的特征参数值都随着驾驶时间的延长而逐渐降低,通过主成分分析可实现特征参数间的合理组合.基于多元回归理论,建立了能够有效预测疲劳驾驶的数学模型.状态验证结果表明,该模型对疲劳状态判别的正确率可达95%以上. 相似文献