共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice. 总被引:2,自引:0,他引:2
J Bressler T F Tsai M Y Wu S F Tsai M A Ramirez D Armstrong A L Beaudet 《Nature genetics》2001,28(3):232-240
In mice and humans, the locus encoding the gene for small nuclear ribonucleoprotein N (SNRPN/Snrpn), as well as other loci in the region are subject to genomic imprinting. The SNRPN promoter is embedded in a maternally methylated CpG island, is expressed only from the paternal chromosome and lies within an imprinting center that is required for switching to and/or maintenance of the paternal epigenotype. We show here that a 0.9-kb deletion of exon 1 of mouse Snrpn did not disrupt imprinting or elicit any obvious phenotype, although it did allow the detection of previously unknown upstream exons. In contrast, a larger, overlapping 4.8-kb deletion caused a partial or mosaic imprinting defect and perinatal lethality when paternally inherited. 相似文献
3.
Chfr is required for tumor suppression and Aurora A regulation 总被引:7,自引:0,他引:7
Yu X Minter-Dykhouse K Malureanu L Zhao WM Zhang D Merkle CJ Ward IM Saya H Fang G van Deursen J Chen J 《Nature genetics》2005,37(4):401-406
Tumorigenesis is a consequence of loss of tumor suppressors and activation of oncogenes. Expression of the mitotic checkpoint protein Chfr is lost in 20-50% of primary tumors and tumor cell lines. To explore whether downregulation of Chfr contributes directly to tumorigenesis, we generated Chfr knockout mice. Chfr-deficient mice are cancer-prone, develop spontaneous tumors and have increased skin tumor incidence after treatment with dimethylbenz(a)anthracene. Chfr deficiency leads to chromosomal instability in embryonic fibroblasts and regulates the mitotic kinase Aurora A, which is frequently upregulated in a variety of tumors. Chfr physically interacts with Aurora A and ubiquitinates Aurora A both in vitro and in vivo. Collectively, our data suggest that Chfr is a tumor suppressor and ensures chromosomal stability by controlling the expression levels of key mitotic proteins such as Aurora A. 相似文献
4.
5.
Kanno T Bucher E Daxinger L Huettel B Böhmdorfer G Gregor W Kreil DP Matzke M Matzke AJ 《Nature genetics》2008,40(5):670-675
RNA-directed DNA methylation (RdDM) is a process in which dicer-generated small RNAs guide de novo cytosine methylation at the homologous DNA region. To identify components of the RdDM machinery important for Arabidopsis thaliana development, we targeted an enhancer active in meristems for methylation, which resulted in silencing of a downstream GFP reporter gene. This silencing system also features secondary siRNAs, which trigger methylation that spreads beyond the targeted enhancer region. A screen for mutants defective in meristem silencing and enhancer methylation retrieved six dms complementation groups, which included the known factors DRD1 (ref. 3; a SNF2-like chromatin-remodeling protein) and Pol IVb subunits. Additionally, we identified a previously unknown gene DMS3 (At3g49250), encoding a protein similar to the hinge-domain region of structural maintenance of chromosomes (SMC) proteins. This finding implicates a putative chromosome architectural protein that can potentially link nucleic acids in facilitating an RNAi-mediated epigenetic modification involving secondary siRNAs and spreading of DNA methylation. 相似文献
6.
AID is required for germinal center-derived lymphomagenesis 总被引:1,自引:0,他引:1
Pasqualucci L Bhagat G Jankovic M Compagno M Smith P Muramatsu M Honjo T Morse HC Nussenzweig MC Dalla-Favera R 《Nature genetics》2008,40(1):108-112
Most human B cell non-Hodgkin's lymphomas (B-NHLs) derive from germinal centers (GCs), the structure in which B cells undergo somatic hypermutation (SHM) and class switch recombination (CSR) before being selected for high-affinity antibody production. The pathogenesis of B-NHL is associated with distinct genetic lesions, including chromosomal translocations and aberrant SHM, which arise from mistakes occurring during CSR and SHM. A direct link between these DNA remodeling events and GC lymphoma development, however, has not been demonstrated. Here we have crossed three mouse models of B cell lymphoma driven by oncogenes (Myc, Bcl6 and Myc/Bcl6; refs. 5,6) with mice lacking activation-induced cytidine deaminase (AID), the enzyme required for both CSR and SHM. We show that AID deficiency prevents Bcl6-dependent, GC-derived B-NHL, but has no impact on Myc-driven, pre-GC lymphomas. Accordingly, abrogation of AID is associated with the disappearance of CSR- and SHM-mediated structural alterations. These results show that AID is required for GC-derived lymphomagenesis, supporting the notion that errors in AID-mediated antigen-receptor gene modification processes are principal contributors to the pathogenesis of human B-NHL. 相似文献
7.
Dax1 is required for testis determination 总被引:11,自引:0,他引:11
The orphan nuclear receptor, Dax1, was originally proposed to act as an 'anti-testis' factor. We find, however, that Nr0b1 (also called Dax1 and Ahch, which encodes Dax1) is in fact required for testis differentiation. 相似文献
8.
The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression 总被引:8,自引:0,他引:8
Kim JC Badano JL Sibold S Esmail MA Hill J Hoskins BE Leitch CC Venner K Ansley SJ Ross AJ Leroux MR Katsanis N Beales PL 《Nature genetics》2004,36(5):462-470
BBS4 is one of several proteins that cause Bardet-Biedl syndrome (BBS), a multisystemic disorder of genetic and clinical complexity. Here we show that BBS4 localizes to the centriolar satellites of centrosomes and basal bodies of primary cilia, where it functions as an adaptor of the p150(glued) subunit of the dynein transport machinery to recruit PCM1 (pericentriolar material 1 protein) and its associated cargo to the satellites. Silencing of BBS4 induces PCM1 mislocalization and concomitant deanchoring of centrosomal microtubules, arrest in cell division and apoptotic cell death. Expression of two truncated forms of BBS4 that are similar to those found in some individuals with BBS had a similar effect on PCM1 and microtubules. Our findings indicate that defective targeting or anchoring of pericentriolar proteins and microtubule disorganization contribute to the BBS phenotype and provide new insights into possible causes of familial obesity, diabetes and retinal degeneration. 相似文献
9.
The expression pattern and activity of fibroblast growth factor-8 (FGF8) in experimental assays indicate that it has important roles in limb development, but early embryonic lethality resulting from mutation of Fgf8 in the germ line of mice has prevented direct assessment of these roles. Here we report that conditional disruption of Fgf8 in the forelimb of developing mice bypasses embryonic lethality and reveals a requirement for Fgf8 in the formation of the stylopod, anterior zeugopod and autopod. Lack of Fgf8 in the apical ectodermal ridge (AER) alters expression of other Fgf genes, Shh and Bmp2. 相似文献
10.
Sox9 is required for cartilage formation. 总被引:32,自引:0,他引:32
11.
Nrl is required for rod photoreceptor development. 总被引:21,自引:0,他引:21
A J Mears M Kondo P K Swain Y Takada R A Bush T L Saunders P A Sieving A Swaroop 《Nature genetics》2001,29(4):447-452
12.
Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome
Gicquel C Rossignol S Cabrol S Houang M Steunou V Barbu V Danton F Thibaud N Le Merrer M Burglen L Bertrand AM Netchine I Le Bouc Y 《Nature genetics》2005,37(9):1003-1007
Silver-Russell syndrome (SRS, OMIM 180860) is a congenital disorder characterized by severe intrauterine and postnatal growth retardation, dysmorphic facial features and body asymmetry. SRS is genetically heterogenous with maternal uniparental disomy with respect to chromosome 7 occurring in approximately 10% of affected individuals. Given the crucial role of the 11p15 imprinted region in the control of fetal growth, we hypothesized that dysregulation of genes at 11p15 might be involved in syndromic intrauterine growth retardation. We identified an epimutation (demethylation) in the telomeric imprinting center region ICR1 of the 11p15 region in several individuals with clinically typical SRS. This epigenetic defect is associated with, and probably responsible for, relaxation of imprinting and biallelic expression of H19 and downregulation of IGF2. These findings provide new insight into the pathogenesis of SRS and strongly suggest that the 11p15 imprinted region, in addition to those of 7p11.2-p13 and 7q31-qter, is involved in SRS. 相似文献
13.
Feedback repression is required for mammalian circadian clock function 总被引:13,自引:0,他引:13
Sato TK Yamada RG Ukai H Baggs JE Miraglia LJ Kobayashi TJ Welsh DK Kay SA Ueda HR Hogenesch JB 《Nature genetics》2006,38(3):312-319
14.
15.
Lee JE Silhavy JL Zaki MS Schroth J Bielas SL Marsh SE Olvera J Brancati F Iannicelli M Ikegami K Schlossman AM Merriman B Attié-Bitach T Logan CV Glass IA Cluckey A Louie CM Lee JH Raynes HR Rapin I Castroviejo IP Setou M Barbot C Boltshauser E Nelson SF Hildebrandt F Johnson CA Doherty DA Valente EM Gleeson JG 《Nature genetics》2012,44(2):193-199
Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction. 相似文献
16.
The mismatch repair system is required for S-phase checkpoint activation 总被引:18,自引:0,他引:18
Brown KD Rathi A Kamath R Beardsley DI Zhan Q Mannino JL Baskaran R 《Nature genetics》2003,33(1):80-84
Defective S-phase checkpoint activation results in an inability to downregulate DNA replication following genotoxic insult such as exposure to ionizing radiation. This 'radioresistant DNA synthesis' (RDS) is a phenotypic hallmark of ataxia-telangiectasia, a cancer-prone disorder caused by mutations in ATM. The mismatch repair system principally corrects nucleotide mismatches that arise during replication. Here we show that the mismatch repair system is required for activation of the S-phase checkpoint in response to ionizing radiation. Cells deficient in mismatch repair proteins showed RDS, and restoration of mismatch repair function restored normal S-phase checkpoint function. Catalytic activation of ATM and ATM-mediated phosphorylation of the protein NBS1 (also called nibrin) occurred independently of mismatch repair. However, ATM-dependent phosphorylation and activation of the checkpoint kinase CHK2 and subsequent degradation of its downstream target, CDC25A, was abrogated in cells lacking mismatch repair. In vitro and in vivo approaches both show that MSH2 binds to CHK2 and that MLH1 associates with ATM. These findings indicate that the mismatch repair complex formed at the sites of DNA damage facilitates the phosphorylation of CHK2 by ATM, and that defects in this mechanism form the molecular basis for the RDS observed in cells deficient in mismatch repair. 相似文献
17.
Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader-Willi syndrome region. 总被引:25,自引:0,他引:25
S E Leff C I Brannan M L Reed T Oz?elik U Francke N G Copeland N A Jenkins 《Nature genetics》1992,2(4):259-264
Prader-Willi syndrome (PWS) is associated with paternal gene deficiencies in human chromosome 15q11-13, suggesting that PWS is caused by a deficiency in one or more maternally imprinted genes. We have now mapped a gene, Snrpn, encoding a brain-enriched small nuclear ribonucleoprotein (snRNP)-associated polypeptide SmN, to mouse chromosome 7 in a region of homology with human chromosome 15q11-13 and demonstrated that Snrpn is a maternally imprinted gene in mouse. These studies, in combination with the accompanying human mapping studies showing that SNRPN maps in the Prader-Willi critical region, identify SNRPN as a candidate gene involved in PWS and suggest that PWS may be caused, in part, by defects in mRNA processing. 相似文献
18.
Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis 总被引:11,自引:0,他引:11
Clarke G Goldberg AF Vidgen D Collins L Ploder L Schwarz L Molday LL Rossant J Szél A Molday RS Birch DG McInnes RR 《Nature genetics》2000,25(1):67-73
The homologous membrane proteins Rom-1 and peripherin-2 are localized to the disk rims of photoreceptor outer segments (OSs), where they associate as tetramers and larger oligomers. Disk rims are thought to be critical for disk morphogenesis, OS renewal and the maintenance of OS structure, but the molecules which regulate these processes are unknown. Although peripherin-2 is known to be required for OS formation (because Prph2-/- mice do not form OSs; ref. 6), and mutations in RDS (the human homologue of Prph2) cause retinal degeneration, the relationship of Rom-1 to these processes is uncertain. Here we show that Rom1-/- mice form OSs in which peripherin-2 homotetramers are localized to the disk rims, indicating that peripherin-2 alone is sufficient for both disk and OS morphogenesis. The disks produced in Rom1-/- mice were large, rod OSs were highly disorganized (a phenotype which largely normalized with age) and rod photoreceptors died slowly by apoptosis. Furthermore, the maximal photoresponse of Rom1-/- rod photoreceptors was lower than that of controls. We conclude that Rom-1 is required for the regulation of disk morphogenesis and the viability of mammalian rod photoreceptors, and that mutations in human ROM1 may cause recessive photoreceptor degeneration. 相似文献
19.