首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
PF18-3 monoclonal antibody (mAb), one of the rat mAbs against mouse thymic stromal cells (MTSC), has been found to inhibit thymocyte apoptosis induced by a mouse thymic dendritic cell line, MTSC4, in previous co-culture study. The aim of this research is to investigate the character of PF18-3 rnAb recognized molecule (PF18-3 molecule) and its role in MTSC4-induced thymocyte apoptosis. The characterization of PF18-3 molecule expression has been conducted by FACS analysis. PF18-3 molecules have been found to express on MTSC4 as well as on Con A activated but not freshly isolated thyrnocytes. Up-regulated expression of PF18-3 molecules has been also observed on thymocytes after being co-cultured with MTSC4 for 48 h. The results from FACS analyses by PI staining for detecting apoptosis-related hypodiploid and by PF18-3 rnAb staining reveal that PF18-3 molecules expresss specifically on the apoptotic subgroup of thymocytes with high hypodiploid content. The PF18-3 molecule expressed on apoptotic thymocytes with 35 ku of molecular weight, identified by immunoprecipitation and western blotting, is thus likely to be a molecule involved in thymocyte apoptosis.  相似文献   

2.
TCRαβ+CD4-CD8- (TCR+ DN) thymocytes at different developmental periods, i.e. after either 9 or 18 days of culture in the fetal thymic organ culture (FTOC) system, were characterized in the properties of phenotype, proliferation, differentiation and apoptosis. The results showed that anti-CD3 mAb significantly promoted proliferation of TCRαβ+ DN cells generated after 18 days of culture in FTOC, whereas the cells generated after 9 days of culture responded to anti-CD3 mAb by proliferation weakly. IL-7 efficiently induced TCRαβ+ DN cells at day 9 of FTOC to differentiate into TCRαβ+CD4+/CD8+ SP cells without detectable transitional stage of TCRαβ+CD4+CD8+ (DP) cells. In contrast, fewer TCRαβ+ DN cells generated after 18 days of FTOC were induced to differentiate into SP cells. The thymic stromal cell line MTEC5 cells synergized with IL-7 to promote the differentiation of TCRαβ+ DN cells. In addition, TCRαβ+ DN cells were shown to be less susceptible to apoptosis compared with the other major thymocyte subsets. Taken together, these data have provided insight into the characteristics of TCRαβ+ DN thymocytes.  相似文献   

3.
W Swat  L Ignatowicz  H von Boehmer  P Kisielow 《Nature》1991,351(6322):150-153
One mechanism ensuring self tolerance of T cells is the clonal deletion of thymocytes bearing alpha beta T-cell receptors. The stage of thymocyte development at which the interaction with antigen-presenting cells (APCs) leads to deletion, however, has not been determined directly. Indirect evidence suggests that intrathymic APCs induce deletion of CD4+8+ thymocytes (which die by apoptosis) but deletion at less and more mature developmental stages has also been implied. It is also not clear if clonal elimination of thymocytes can be triggered by peripheral antigens carried on extrathymic APCs migrating through the thymus. Here we show antigen-specific induction of apoptosis in CD4+8+ thymocytes cultured in suspension, by thymic as well as splenic APCs. Thus the recognition of antigen by CD4+8+ thymocytes may lead to deletion, suggesting that this is the central mechanism of tolerance induction, which is not limited by the antigen-presenting ability of the thymic stroma.  相似文献   

4.
The growth of mature T lymphocytes after activation by antigen is regulated by the binding and endocytosis of interleukin-2 (IL-2). In the thymus, approximately 50% of adult thymocytes that carry neither the CD4 nor the CD8 antigen and day 14-15 fetal CD4-8- thymocytes express receptors for IL-2(IL-2R). The CD4-8- (double-negative) subpopulation of thymocytes contains the precursors of cells that can differentiate along an unknown pathway into thymocytes bearing either CD8 or CD4, with the characteristics of mature T lymphocytes. The basis for IL-2R expression by double-negative thymocytes is unclear as they appear to lack a functional T-cell receptor/CD3 complex through which activation of peripheral T cells is mediated. The argument for a role for IL-2 in thymocyte differentiation has also been complicated by conflicting reports on the inability or capability of double-negative thymocytes to respond to IL-2 in vitro. At present, both the nature of the stimuli within the thymic micro-environment which induce IL-2R expression and its relevance to thymocyte differentiation are not known. We show here that the IL-2R-bearing subset has a greater potential to differentiate into phenotypically mature T lymphocytes than do IL-2R-negative thymocytes. In addition, progeny of IL-2R-negative donor cells transiently express IL-2R in the thymuses of adoptive hosts before generating CD8 and/or CD4-positive thymocytes. These results identify the IL-2R-positive cells as a more differentiated double-negative thymocyte subset on the pathway to mature T lymphocytes.  相似文献   

5.
This study investigates the effect of lithium chloride (LiCI) on mouse thymocyte apoptosis. A primary culture of mouse thymocytes was preincubated with LiCI (from 5 to 500μmol/L) before exposure to dexamethasone (DEX), the apoptosis inducer. With 100μmol/L of LiCI, apoptotic cell death induced by DEX was almost completely prevented as determined by flow cytometric analysis, terminal deoxynudeotidyltransferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and DNA laddering assay. The results show that the DEX-induced increment of caspase-3 activity in thymocytes is completelye liminated by LiCI preincubation. The results suggest that LiCI may protect Balb/c mouse thymocytes from apoptosis induced by glucocorticoid in a dose-dependent matter.  相似文献   

6.
The intrathymic differentiation process by which precursor cells derived from the bone marrow develop into immuno-competent T lymphocytes is poorly understood. Most thymocytes express both CD4 and CD8 accessory molecules, yet little is known about either the function of these molecules or the responsiveness of the CD4+8+ double positive thymocytes that bear them. Here, we address the possibility that CD4 engagement influences T-cell receptor (TCR) expression on developing thymocytes. We engaged CD4 molecules on murine thymocytes by in vivo injection of an anti-CD4 monoclonal antibody, which reduced the surface expression of CD4 on CD4+ thymocytes. More importantly, CD4 engagement also affected TCR expression on CD4+ thymocytes, but the effect on CD4+8+ double positive and CD4+8- single positive thymocytes was very different. CD4+8+ thymocytes responded to CD4 engagement by dramatically increasing surface expression of TCR, whereas CD4+8- thymocytes decreased surface expression of TCR. These results demonstrate that the effect of CD4 engagement on TCR expression is dependent upon the developmental state of the responding thymocyte, and, most interestingly, results in increased TCR expression by double positive thymocytes.  相似文献   

7.
Much of the differentiation of murine T cells takes place in the thymus, perhaps influenced by the operation of stringent selection mechanisms whose existence has been inferred from the high rate of thymocyte turnover in the absence of extensive emigration. The origin of those 1% of total thymocytes which leave the thymus and seed the peripheral lymphoid organs is obscure. Recent thymic emigrants are functionally and phenotypically mature, and the purported greater maturity of medullary relative to cortical thymocytes is often cited a evidence for the medullary origin of thymic emigrants, a suggestion not without its critics. To approach this question, we have now isolated a a subpopulation of thymocytes expressing high levels of a receptor that mediates the homing of blood-borne lymphocytes into peripheral lymph nodes. Surprisingly, this population of cells (1-3% of total thymocytes) is both cortical and immunocompetent, containing approximately half of all thymic cytolytic T-lymphocyte precursors. The combination of homing receptor expression and immunocompetence makes this cortical population ideally suited for emigration to peripheral lymphoid organs.  相似文献   

8.
Deletion of self-reactive thymocytes occurs at a CD4+8+ precursor stage   总被引:34,自引:0,他引:34  
B J Fowlkes  R H Schwartz  D M Pardoll 《Nature》1988,334(6183):620-623
As T cells develop in the thymus, they become tolerant of self-antigens. A major advance in the understanding of how this process occurs was the direct demonstration that cells bearing autoreactive T-cell receptors (TCRs) are physically eliminated from the population of functionally mature T cells present in both the thymus and periphery. We have sought to determine the developmental stage at which autoreactive T cells are eliminated by examining the expression of V beta 17a anti-I-E TCRs under various experimental conditions. In vivo antibody blockage of the CD4 molecule on developing thymocytes of I-E+ C57BR mice was found to inhibit the deletion of V beta 17a-bearing cells from the CD4-8+ single positive thymocyte subset. This result provides strong evidence that deletion of potentially autoreactive T cells occurs at a CD4+8+ precursor stage, that the non-clonally distributed accessory molecules (CD4, CD8) are significant participants in the self-recognition process that leads to clonal elimination, and that thymic class II major histocompatibility complex (MHC) molecules can influence the repertoire of CD4-8+ cells.  相似文献   

9.
Identification of Tim4 as a phosphatidylserine receptor   总被引:1,自引:0,他引:1  
Miyanishi M  Tada K  Koike M  Uchiyama Y  Kitamura T  Nagata S 《Nature》2007,450(7168):435-439
In programmed cell death, a large number of cells undergo apoptosis, and are engulfed by macrophages to avoid the release of noxious materials from the dying cells. In definitive erythropoiesis, nuclei are expelled from erythroid precursor cells and are engulfed by macrophages. Phosphatidylserine is exposed on the surface of apoptotic cells and on the nuclei expelled from erythroid precursor cells; it works as an 'eat me' signal for phagocytes. Phosphatidylserine is also expressed on the surface of exosomes involved in intercellular signalling. Here we established a library of hamster monoclonal antibodies against mouse peritoneal macrophages, and found an antibody that strongly inhibited the phosphatidylserine-dependent engulfment of apoptotic cells. The antigen recognized by the antibody was identified by expression cloning as a type I transmembrane protein called Tim4 (T-cell immunoglobulin- and mucin-domain-containing molecule; also known as Timd4). Tim4 was expressed in Mac1+ cells in various mouse tissues, including spleen, lymph nodes and fetal liver. Tim4 bound apoptotic cells by recognizing phosphatidylserine via its immunoglobulin domain. The expression of Tim4 in fibroblasts enhanced their ability to engulf apoptotic cells. When the anti-Tim4 monoclonal antibody was administered into mice, the engulfment of apoptotic cells by thymic macrophages was significantly blocked, and the mice developed autoantibodies. Among the other Tim family members, Tim1, but neither Tim2 nor Tim3, specifically bound phosphatidylserine. Tim1- or Tim4-expressing Ba/F3 B cells were bound by exosomes via phosphatidylserine, and exosomes stimulated the interaction between Tim1 and Tim4. These results indicate that Tim4 and Tim1 are phosphatidylserine receptors for the engulfment of apoptotic cells, and may also be involved in intercellular signalling in which exosomes are involved.  相似文献   

10.
根据小鼠的胸腺细胞实验数据,建立了描述胸腺细胞(thymocyte)发育过程的数学模型,该模型考虑了胸腺细胞与胸腺基质细胞(thymic stromal cell,TSC)之间的相互作用,能够模拟CD4-CD8-DN细胞重建动态及正常小鼠胸腺细胞的发育过程,研究表明,模型中的一些参数应该是含有时间延迟的,通过模型研究了胸腺细胞与TSC之间亲和力在胸腺选择过程中的阳性与阴性选择中的差异,理论预言与实  相似文献   

11.
《科学通报(英文版)》1999,44(17):1571-1571
A murine CD4+ thymocyte subset with phenotype of TCRαβ + 3G11- 6C10- CD4 + CD8- CD69 +/- HSAmed/locontains the cells in relatively functional matured status. The functional property of the cells in this subset is characterized by the unique pattern of cytokine production at transitional stage from Th0 to Th2 type with the latter being the dominant type. After being co-cultured with murine thymic medullary epithelial cell line (MTEC1) cells, a murine thymic medullary type epithelial cell line, the TCRαβ(T 3G11 6C10-CD4 + CD8- CD69+/- HSAmed/l? thy-mocytes, has exhibited significantly higher levels of proliferation capability and IL-6 production, whereas the production of IL-4 and IL-10 is suppressed after co-culturing with MTECl. By contrast, MTECl could not induce thymocytes to secrete Th1 type of cytokines. The results suggest that MTECl can regulate functional status of this thymocyte subset and induce them to develop into a specialized Th2 subset.  相似文献   

12.
Watanabe N  Wang YH  Lee HK  Ito T  Wang YH  Cao W  Liu YJ 《Nature》2005,436(7054):1181-1185
Hassall's corpuscles-first described in the human thymus over 150 years ago-are groups of epithelial cells within the thymic medulla. The physical nature of these structures differs between mammalian species. Although Hassall's corpuscles have been proposed to act in both the removal of apoptotic thymocytes and the maturation of developing thymocytes within the thymus, the function of Hassall's corpuscles has remained an enigma. Here we report that human Hassall's corpuscles express thymic stromal lymphopoietin (TSLP). Human TSLP activates thymic CD11c-positive dendritic cells to express high levels of CD80 and CD86. These TSLP-conditioned dendritic cells are then able to induce the proliferation and differentiation of CD4(+)CD8(-)CD25(-) thymic T cells into CD4(+)CD25(+)FOXP3(+) (forkhead box P3) regulatory T cells. This induction depends on peptide-major histocompatibility complex class II interactions, and the presence of CD80 and CD86, as well as interleukin 2. Immunohistochemistry studies reveal that CD25(+)CTLA4(+) (cytotoxic T-lymphocyte-associated protein 4) regulatory T cells associate in the thymic medulla with activated or mature dendritic cells and TSLP-expressing Hassall's corpuscles. These findings suggest that Hassall's corpuscles have a critical role in dendritic-cell-mediated secondary positive selection of medium-to-high affinity self-reactive T cells, leading to the generation of CD4(+)CD25(+) regulatory T cells within the thymus.  相似文献   

13.
The thymus is regarded as the primary site for T-cell lymphopoiesis, but very little is known about the lineage inter-relationships of cells within that organ. At least four subpopulations of mouse thymocytes can be defined on the basis of staining with monoclonal antibodies directed against the T-cell differentiation antigens Lyt-2 and L3T4 (ref. 2). Thus immunocompetent (medullary) thymocytes, like peripheral T cells, express either Lyt-2 (cytotoxic phenotype) or L3T4 (helper phenotype) but not both, whereas non-functional (cortical) thymocytes express both markers. In addition, a small subpopulation comprising 2-3% of cells in the thymus and expressing neither Lyt-2 nor L3T4 has recently been described. The latter cells have the properties of intrathymic 'stem cells' in that they are the first to appear in the embryonic thymus and at least some can be shown to give rise, both in vivo (ref. 4. and our unpublished data) and in vitro, to other thymocyte subpopulations. We show here that 50% of Lyt-2-/L3T4- cells in the adult thymus express receptors for the polypeptide growth hormone interleukin-2 (IL-2) whereas other cells in the thymus do not. Furthermore, immunohistochemical localization studies on frozen sections indicate a disperse distribution of IL-2 receptor-positive cells in both the cortex and medulla. These novel findings have potential implications in the context of current models of differentiation pathways within the thymus.  相似文献   

14.
15.
Profound block in thymocyte development in mice lacking p56lck.   总被引:66,自引:0,他引:66  
The protein Lck (p56lck) has a relative molecular mass of 56,000 and belongs to the Src family of tyrosine kinases. It is expressed exclusively in lymphoid cells, predominantly in thymocytes and peripheral T cells. Lck associates specifically with the cytoplasmic domains of both CD4 and CD8 T-cell surface glycoproteins and interacts with the beta-chain of the interleukin-2 receptor, which implicates Lck activity in signal transduction during thymocyte ontogeny and activation of mature T cells. Here we generate an lck null mutation by homologous recombination in embryonic stem cells to evaluate the role of p56lck in T-cell development and activation. Lck-deficient mice show a pronounced thymic atrophy, with a dramatic reduction in the double-positive (CD4+CD8+) thymocyte population. Mature, single-positive thymocytes are not detectable in these mice and there are only very few peripheral T cells. These results illustrate the crucial role of this T-cell-specific tyrosine kinase in the thymocyte development.  相似文献   

16.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

17.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   

18.
B Seed 《Nature》1987,329(6142):840-842
Recently the human T cell erythrocyte receptor CD2 has been shown to bind human erythrocytes through LFA-3, a heavily glycosylated surface protein of broad tissue distribution. CD2-LFA-3 interactions are important for cytolytic conjugate formation, for thymocyte adhesion, and for T cell activation. A complementary DNA clone encoding LFA-3 was isolated using a complementary DNA clone encoding LFA-3 was isolated using a novel transient expression system of mouse cells. The cDNA encodes a phospholipid-linked membrane protein whose extracellular domain shares significant homology with CD2. As CD2 is homologous with the neural cell adhesion molecule NCAM in immunoglobulin-like domains, cellular adhesion molecules in both neural and lymphoid tissues could have a common ancestor.  相似文献   

19.
R Kingston  E J Jenkinson  J J Owen 《Nature》1985,317(6040):811-813
There is much interest in early T-cell development, particularly in relation to the diversification of the T-cell receptor repertoire and the elucidation of the lineage relationships between T-cell populations in the thymus and peripheral lymphoid organs. However, the requirements for the growth of the earliest thymic T-cell precursor in 13-14-day mouse embryo thymus in isolation from the thymic environment are unknown. Proliferation and maturation of such cells are not sustained either in the presence of monolayers of thymic stromal cells or by the addition of interleukin-2 (IL-2), despite the expression of receptors for this growth factor on a proportion of thymocytes displaying the immature Thy 1+ Lyt-2-L3T4- phenotype in the embryonic thymus. In contrast, when maintained within the intact thymic environment in organ cultures, 13-14-day thymic stem cells do show a pattern of surface marker and functional development similar to that seen in vivo, suggesting that short-range growth signals, perhaps necessitating direct contact with organized epithelial cells, are required. We have shown, by exploiting the selective toxicity of deoxyguanosine (dGuo) for early T cells, that this organ culture system can be manipulated to produce alymphoid lobes that can be recolonized from a source of precursors in a transfilter system. We now show that recolonization of alymphoid lobes can also be achieved by association with T-cell precursors in hanging drops, allowing recolonization by exposure to defined numbers of precursors, including a single micromanipulated stem cell. Analysis of T-cell marker expression in these cultures shows that a single thymic stem cell can produce progeny of distinct phenotypes, suggesting that these marker-defined populations are not derived from separate prethymic precursors, but arise within the thymus.  相似文献   

20.
丹参提取物对氧化衰老模型小鼠的免疫保护作用   总被引:4,自引:0,他引:4  
采用小鼠氧化衰老模型探讨丹参提取物的免疫保护作用及抗氧化作用 .用小鼠脾脏淋巴细胞增殖试验检测免疫细胞的功能状态 ;用免疫组化法和HE染色观察胸腺的氧化情况及形态学变化 ;用流式细胞仪检测细胞表面CD2 8分子及其他分子的变化 ,来探讨免疫分子的变化情况 .结果表明丹参提取物能明显恢复由氧化应激造成的免疫功能低下状态 .淋巴细胞增殖功能得到了明显改善 .胸腺内核酸氧化产物 8-OHdG染色阳性细胞明显减少 ,胸腺皮质恢复良好 .免疫细胞表面CD2 8分子明显增加 ,CD4阳性细胞也明显增多  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号