首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文首先引进了Boolean-like环的一类新的扩张J-Boolean like环,即对任意环R中元素a,b都有(a-a2)(b-b2)∈J(R),这里J(R)为环R的Jacobson根,则环R称为J-Boolean like环.证明了两个定理分别为(1)设D是一个环,C是D的一个子环,R[D,C]是一个J-Boolean like环(a)C,D是J-Boolean like环,(b)J2(C)J(D).(2)如果B/J(B)是Boolean环,并且B[i]={a+bi|i2=ui+η,a,b,u,η∈B},那么B[i]是J-Boolean like环当且仅当uη∈J(B).  相似文献   

2.
设a∈R,如果对环R元素b,满足aR+bR=R,则存在幂等元e∈R,使得a+be有左逆,那么称元素a有幂等稳定度1(记为isr(a)=1).如果对于R中的所有元素a,都有isr(a)=1,那么称环R有幂等稳定度1(记为isr(R)=1).证明了若R是半完全环,G是初等阿贝尔p-群,则isr(RG)=1.另外,若isr(R)=1,G是局部有限p-群,且p∈J(G),则isr(RG)=1.  相似文献   

3.
<正> 我们知道整数环内{-1,-1}形成乘群,而且是一循环群;有限域F的非零元全体形成一乘群,且也是循环群。这不是偶然的,实际上有:定理:整环R内有限乘法封闭子集G必是循环群。在证明此定理之前,我们先看下面几个引理。引理1:若a,b是群G中元,ab=ba o(a)=m o(b)=n(m,n)=1,则  相似文献   

4.
本文我们将证明下列结果:设R是一个素环,N是R的一个理想,并且p、q是R的两个固定元素。 (a) 如果a~5=0对任意a∈N那么N=0。 (b) 如果N≠0且pa~3q=0对一切a∈N则p=0或q=0。其中的结论 (b) 去掉了文[1] 定理1对R的特征不等于2的假设。  相似文献   

5.
1.引言对于任一可结合环 A,能够用它的元素与运算构成它的李环。这只要保持 A 中的元素和A 中定义的加法,但是重新引入乘法:对任意的 a、b∈A,定义李乘积为[a、b]=ab-ba,此处 ab 为 A 中元素的通常可结合积。我们称 A 的一个加法子群 U 为 A 的李理想,如果对于任何 u∈U 与任何 x∈A 而言,ux—xu 仍是 U 的一个元素。Herstein 在[1]中就 A 为一个单纯环的情形讨论了 A 的李理想,得出以下结果:设 A 为一个特征异于2的单纯环,U 为 A 的李理想,则或者 U 含于 A 的中心内,或者 U 包含[A.A],此处[A.A]表示由所有换位子 xy—yx(x、y∈A)生成的加法子群。根为零且其左理想满足降链条件的环称为半单纯的。本文将讨论半单纯环的李理想。我们的主要依据是 Artin 的结构定理:半单纯环 R 是有限个单纯理想(因而是单纯环)的直和:R=R_1R_2……R_n。希望能将 R 的李理想分解为诸单纯环 R_i(i=1.2.……n)的李  相似文献   

6.
设G是一个图。令 NC(G)=min{|N(u)∪N(V)|{u,v)(?)V(G),uv(?)E(G)},本文主要结论如下:定理1 设 G 是3—连通图,|V(G)|=n,{a,b)(?)V(G).若 G 含有一条(a,b)—控制路,则 G 中存在(a,b)—控制路 P,使得|V(P)|≥min{n,2NC(G)-1}定理2 设 G 是3—连通图,|V(G)|=n,NC(G)≥1/2(n+1).若对于任意{a,b)(?)V(G),G 中都有(a.b)—控制路,则 G 是 Hamilton—连通的。  相似文献   

7.
证明了如下结论 :设 1≤a an 1a b,则G是 [a ,b]—对等图 .  相似文献   

8.
对于满足一定条件的Baer半单纯环讨论了其交换性,得到了两个结论:(1)设R为Baer半单纯环,C为R的中心,G(a,b)(a,b∈R)是由a,b生成的乘法子半群,若有自然数e,对任意a,b∈R,恒有小于e的自然数n=n(a,b)>1,使对于任意x,y∈G(a,b),有(xy)n-xnyn∈C,则R为交换环。(2)设R为Baer半单纯环,C为R之中心,若有自然数e,对任意a,b∈R,恒有自然数k=n(a,b),n(a,b)+1,n(a,b)+2≤e,使得(ab)k-akbk∈C,则R为交换环。  相似文献   

9.
对于满足一定条件的Baer半单纯环讨论了其交换性,得到了两个结论:(1)设R为Baer半单纯环,C为R的中心,G(a,b)(a,b∈R)是由a,b生成的乘法子半群,若有自然数e,对任意a,b∈R,恒有小于e的自然数n=n(a,6)>1,使对于任意x,y∈G(a,b),有(xy)n-xnyn∈C,则R为交换环.(2)设R为Baer半单纯环,C为R之中心,若有自然数e,对任意a,b∈R,恒有自然数k=(a,b),n(a,b)+1,n(a,b)+2≤e,使得(ab)k-akbk∈C,则R为交换环.  相似文献   

10.
设G1,G2是群,映射φ:G1→G2叫做G1到G2的广义同态映射,如果a,b∈G1,等式(ab)φ=aφbφ和(ab)φ=bφaφ,至少有一个成立.称群G广义作用在集合Ω上,如果群G到变换群SΩ有一个广义同态映射.通过研究有限群在集合上的广义作用及广义自同构群,得到了若干结果,推广了一些相关的经典定理.  相似文献   

11.
Van der Waerden的“代数学”一书,对欧氏环是这样定义的: 设R是一个交换环,其中每一个非零元素a对应一个非负整数g(a),具有性质 1、对于a≠0,b≠0,有ab≠0且g(ab)≥g(a)。 2、(带余除法)对于任意二个元素a,b其中b≠0,有a=qb r。这里r=0,或g(r)相似文献   

12.
设α是环R的自同态。称环R为右α-可逆环,如果对任意的a,b∈R若ab=0,则bα(a)=0.本文讨论了α-可逆环,α-刚性环,可逆环和弱α-Skew Armendariz环的关系。设R是可逆环和右α-可逆环,证明了:(1)R是弱α-Skew Armendariz环;(2)对任意的正整数n, R[x] /(xn)是弱α-Skew Armendariz环;(3)若αt=1R,则R[x;α]是弱Armendariz环.  相似文献   

13.
在M·Hall著的群论中用“除法”给出了群的一个定义,该定义为:群G是一元素之集G(a,b,…),具有二元运算a/b满足;L0.对G之每有序元素偶a,b确定唯一元素a/b=c∈GL1.a/a=b/bL2.a/(b/b)=a (Ⅰ)L3.(a/a)/(b/c)=c/bL4.(a/c)/(b/c)=a/b  相似文献   

14.
本文将[1]中结论分别在群上和环上作了进一步推广,得到如下结果: 定理1 设G为群,u,v为G中元,则G对“O”:xOy=xv~(-1)u~(-1)y(2)作成群,且G与在φ:x|→uxv,x∈G下同构。反之,若是群G中元对新运算(?)作成的群,且G与在x|→uxv下同构,则(?)就是(2)式定义的O。定理2 若群G有有限方指数n,则G对“O”:xOy=(x~rv~(-1)uy~r)~s(3)成群,其中rs≡|(mvdn),u、v为G中两元素,且G与在φ:x|→(uxv)~s下同构。反之,若是G中元素对运算(?)作成的群,且G与在φ:x|→(uxv)~s下同  相似文献   

15.
设G1,G2是群,映射f:G1→G2叫做G1到G2的广义同态映射,如果a,b∈G1,等式(ab)f=afbf和(ab)f=bfaf至少有一个成立.通过研究群的广义自同构群,该文得到了若干结果,推广了一些相关的经典定理,包括P.Hall关于自同构群的一个定理等.  相似文献   

16.
强自反环     
设R为一个环,如果对任意a,b,c∈R,aRbRc=0蕴涵aRcRb=0,则称R为强自反环.给出强自反环的一些性质,利用强自反环给出对称环的一个刻画.证明了如下结果:①R是symmetric环当且仅当R是强自反环和IFP环;②半素环是强自反环,但反之不成立;③R是强自反环当且仅当对任意a1,a2,…,an∈R(n≥3),a1Ra2Ra3…Ran=0蕴涵ai1Rai2Rai3…Rain=0,其中i1i2i3…in是1,2,3,…,n的任意一种排列;④设R为quasi-Abel环,x∈R为exchange元,则x为clean元.  相似文献   

17.
设G是一个群,用ΓZ(G)表示G的中心图.定义ΓZ(G)的顶点集为群G的元素满足:对G中任意两个不同的元素a,b,若ab∈Z(G),则a,b相连,其中Z(G)为G的中心.主要研究二面体群D2n和广义四元数群Q4n的中心图,完整地得到了这两类群的中心图.  相似文献   

18.
设G是一个群,ΓZ(G)是群G的中心图.ΓZ(G)的定义为顶点集是群G的元素,对任意G中的两个不同的元素a,b,若ab∈Z(G),则a,b相连,其中Z(G)为G的中心.该文主要研究了n元对称群Sn和n元交错群An的中心图.  相似文献   

19.
设G是一个有限群.如果G中每个元素是实元,则称G是二性群.如果对于G的每个不可约特征标χ,χ(g)是有理数,g∈G,则称G是有理群.有理群类是二性群类的子类.有理群理论是有限群结构理论和有限群表示理论的一个重要部分,对于有限群中元素共轭等问题的研究有重要的意义.确定几种满足某些条件的有理群的结构,将关于二性群的Shure指数的一个定理推广并对这个定理重新给出一个简单的证明.  相似文献   

20.
设图G是一个简单图,图G的补图记为G.如果G的谱完全由整数组成,就称G是整谱图.讨论了当u1=a+b且a-1>b时,aKa U(3B+2)Kb,b不是整谱图;当u1=a+b且a≤b时,aKa UBKb,b(a=1,B=1,a=3或2,b=6)是整谱图.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号