首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
本文首次将诱导有序加权平均(IOWA)算子应用到短时交通流预测中,建立了以整体预测误差平方和最小为目标的组合预测模型。在分析短时交通流预测模型的基础上,本文选取了指数平滑法、季节自回归求和移动平均模型(SARIMA)、BP神经网络模型对短时交通流进行预测,再用IOWA算子将这三种模型进行组合预测。最后进行实例验证,通过MAE、MSE和MAPE三项指标比较分析四种模型的预测效果。结果证明,IOWA算子组合预测模型明显优于其他的预测模型,有效地提高了短时交通流的预测精度。  相似文献   

2.
针对短时交通流不确定性极强引起的预测结果精度低的问题,提出一种改进萤火虫算法(IFA)优化RBF神经网络的短时交通流预测模型(IFA-RBF).该模型通过引入线性递减惯性权重和混沌机制,来改进FA后期存在的易陷入局部极值和种群多样性匮乏的不足,利用IFA优化RBF神经网络的连接权重和基函数宽度,以提升RBF神经网络的短时交通流预测精度.实验结果表明,与Elman、BP、RBF和FA-RBF模型相比,构建的短时交通流预测模型(IFA-RBF)具有更高的预测精度,预测值与实际值拟合度较高.  相似文献   

3.
为提高路段短时交通流的预测精度,选取路段平均旅行时间作为预测指标,建立了一种基于极端样度上升(extrem gradient boosting,XGBoost)的短时交通流预测模型。首先通过对交通流数据的分析,在考虑交通流时空特性的基础上,分别构建目标路段时间序列训练集、测试集以及时空序列训练集、测试集,然后基于XGBoost模型以及构建的训练样本集建立时间序列预测模型以及时空序列预测模型,并利用训练好的模型进行预测,最后将模型预测结果与线性回归模型、神经网络模型预测结果进行比较。实验结果表明:基于XGBoost的短时交通流预测模型能够对路段未来时段平均旅行时间进行比较准确的预测,其中时间序列预测模型均方根误差为5. 32,时空序列预测模型均方根误差为4. 82,均低于线性回归模型和神经网络模型,且相比于仅考虑时间因素的短时交通流预测模型,同时考虑时空因素的预测模型得到的误差更低,预测效果更好。  相似文献   

4.
基于神经网络和混沌理论的短时交通流预测   总被引:2,自引:0,他引:2  
唐志强  王正武  招晓菊  李宏 《山西科技》2005,(5):117-118,120
文章通过分析短时交通流量数据在时间序列上的特点,结合神经网络和混沌理论,从非线性时间序列预测的角度对交通量预测进行探讨。并用该方法对广州至佛山高速公路交通流进行了预测,取得了较为满意的效果。  相似文献   

5.
为检验灰色模型及径向神经网络模型用于短时交通流预测的可行性及适用性,本文分析和比较了灰色模型GM(1,1)和RBF径向神经网络模型对短时交通流的预测效果。仿真实例表明,灰色模型不适合用于短时交通流预测,而径向神经网络能够准确预测短期交通流的未来变化趋势,当径向基函数的分布密度值在0.8~1.0之间时能够取得较高的预测精度。  相似文献   

6.
交通流预测对于减少拥堵、节能减排具有重要意义.基于卷积神经网络的预测方法普遍采用梯度下降法训练神经网络,缺点在于预测对网络初始参数敏感.本文采用遗传算法对卷积神经网络的网络参数进行确定从而对短时交通流进行预测.首先,根据交通流数据的特点,设计了适用于交通流预测的卷积神经网络结构;然后,确定卷积神经网络的卷积核与全连接层参数的解空间;随后,采用遗传算法对卷积神经网络参数在可行域中通过选择、交叉、变异三种遗传操作不断迭代搜索得到最优参数解.仿真结果表明,与梯度下降法训练的卷积神经网络相比,该方法拥有更高的预测精度.  相似文献   

7.
可靠的短时交通流预测是智能交通系统的重要基础。为了提高短时交通流预测的预测精度和对于不同交通状态的适应性,在分析了交通流特性以及时空二维影响因素的基础上,提出了一种组合预测模型,使其能够综合反映这些特性和影响因素。该组合预测模型包括时间序列模块、空间相关模块和组合预测模块三个子模块。单项预测模型包括自适应单指数平滑模型和RBF神经网络模型,组合系数是以两个单项预测子模块的平滑百分比相对误差作为输入,以神经网络作为学习算法自适应地得到。最后通过平峰和高峰时段实测的交通流量数据来验证模型的有效性和可靠性,结果表明:该组合预测模型的预测精度高于单项预测模型各自单独使用时的精度,且对于不同的交通流状况具有较好的适应性。  相似文献   

8.
由于多数交通流预测模型仅利用了目标路段交通流的历史数据,在一定程度上影响了预测效果。为此,该文提出了一种基于时空依赖性的区域路网短时交通流预测模型。首先,根据区域路网各路段间的拓扑关系,将其抽象为明确表征上下游路段关系的树状结构,进而根据上下游通路上交叉口转弯率的多阶分配来量化上下游路段的时空依赖性,并将其用于时空自回归差分移动平均模型(STARIMA)空间权重矩阵的改进,最后利用历史数据对改进后的STA-RIMA模型进行参数标定,并用于短时交通流预测。实验结果表明:经过改进后的STARIMA模型,具有更好的预测效果,为区域路网短时交通流预测提供了一种新的方法。  相似文献   

9.
以单断面的交通流量为研究对象,采用动态Elman神经网络进行短时交通流量的预测,提出一种基于GA-Elman神经网络的交通流短时预测方法.该方法通过遗传算法优化Elman神经网络的权值和阈值,克服了Elman神经网络易陷入局部最小的缺陷,同时提高了Elman神经网络的泛化能力和预测精度.实验仿真表明,本文方法可用于城市快速路上预测实时交通流量,预测效果优于Elman、GA-BP预测模型.  相似文献   

10.
针对单一模型无法深入挖掘交通流复杂的线性和非线性特征方面的局限性以及神经网络模型在训练时收敛速度缓慢等问题,提出了一种基于SARIMA-GA-Elman的组合预测模型.该组合模型有效地融合了季节性差分自回归滑动平均(seasonal autoregressive integrated moving average,SARIMA)模型良好的线性拟合能力和Elman递归神经网络强大的非线性映射能力;在预测过程中首先基于SARIMA滚动预测时间序列的线性分量,然后使用SARIMA模型的预测误差序列建立Elman-RNN构建非线性误差模型;此外在训练非线性误差模型的过程中使用经过二进制编码的遗传算法(genetic algorithm,GA)优化Elman-RNN,旨在提升Elman-RNN的训练效率,最后把两个模型的预测结果加权组合得到最终的预测值.实验结果表明,该组合模型在预测精度和鲁棒性方面相比单一模型都有较为明显的提升.  相似文献   

11.
基于最近邻法的短时交通流预测   总被引:3,自引:0,他引:3  
针对交通流量变化存在周期性和随机性的特点,提出一种基于最近邻法的预测方法.着重介绍了状态向量构造、近邻范围确定和权重计算方法三方面的研究.根据流量与速度、占有率的关系,认为状态向量中不必考虑速度和占有率这两个交通参数;与传统最近邻法不同,近邻的个数不设为常量,而取决于所能搜索到的记录数;通常根据距离远近赋予权重的规则不可靠,而采用了等权重法.通过实际数据检验,预测误差低于7%.  相似文献   

12.
准确的高速公路短时交通流预测是实现交通诱导和控制的重要前提和基础。为了提高预测精度,提出一种基于流形距离(MD)的K近邻-长短期记忆(K-nearest neighbor-long short-term memory,KNN-LSTM)高速公路短时交通流预测模型。该模型利用流形相似性分析高速公路交通流的时空特性,计算多站点与目标站点之间的流形距离。然后,采用改进的KNN算法筛选出空间相关站点构造交通流数据集,通过LSTM模型提取时序特征得出预测结果。实验表明,与单一预测模型相比,该方法能更好地提取交通流时空特性且预测精度更高,可为高速公路的交通管理提供必要的依据。  相似文献   

13.
采用剔出了城市道路短期交通流的周周期性特征的周差分数据作为广义回归神经网络(GRNN)模型的预测对象,这样既能避免合理选择交通流影响因素作为神经网络输入变量的困难,又能迅速获得实时短期交通流预测结果。研究结果表明,构建的神经网络模型能够很精确地实时预测城市道路短期交通流。  相似文献   

14.
文中首先根据交叉口交通流参数时间序列的相关性对关联交叉口进行定义,给出关联交叉口短时交通流可预测分析的几个定量指标,以及交通流时间序列最大Lya-punov指数的计算方法;然后提出在短时交通流时间序列的可预测分析基础上,选取一组预测模型并建立基于RBF网络的非线性组合预测模型,提出了关联交叉口短时交通流的组合预测算法;最后对实测短时交通流进行仿真试验,结果表明组合预测方法相对于单项预测方法具有更好的预测性能.  相似文献   

15.
提出了用于短时交通流预测的多项式分布滞后模型.其建模思想是交通状态时间序列同时受自身滞后项之外的多个因素影响,并且影响分布到了多个时段.通过与ARIMA模型(自回归整数移动平均模型)的预测精度对比分析,表明PDL(多项式分布滞后)模型具有与ARIMA相同的预测精度,而在模型可移植性、算法复杂性和实现方面更具优势.研究结果为短时交通流预测理论提供一种新的研究思路.  相似文献   

16.
空中交通流量短期预测对于精准实施空中交通流量管理具有重要意义。为提高空中交通流量短期预测准确性,充分利用历史运行数据,提出了基于动态时间规整和长短期记忆(dynamic time warping-long short-term memory, DTW-LSTM)的空中交通流量短期预测模型。首先,分析了空中交通流的时空相关性特征,采用DTW算法衡量扇区之间交通流相关性;其次,依据相关性度量结果构建数据集,在不同输入条件下建立LSTM网络预测模型;最后,在不同时空参数组合模型间展开预测性能对比及分析。实验结果表明,相较于不考虑时空相关性的LSTM模型,本模型平均绝对误差(mean absolute error, MAE)降低24.5%,均方根误差(root mean squared error, RMSE)降低31.4%,相较于时空相关性的支持向量回归(support vector regression, SVR)模型,MAE降低36.4%,RMSE降低30.6%。由此可见,通过考虑交通流时空相关性可以有效提升流量短期预测的准确性,为空中交通流预测提供有益参考。  相似文献   

17.
基于支持向量回归机的交通状态短时预测方法研究   总被引:6,自引:0,他引:6  
提出基于支持向量回归机的交通状态短时预测方法.具体的做法是,以交通检测器收集到某时刻前几时段及上下游前几时段的交通流量、占有率、平均速度等交通参数为输入,以对应时段交通流量为输出,选取核函数,对支持向量回归机进行训练.应用训练完成的支持向量回归机,输入交通流量、占有率、平均速度,来预测下时段的交通流量.最后,以某城市道路的实时数据来对模型进行验证,预测结果表明了模型的有效性.  相似文献   

18.
基于二型模糊逻辑的交通流量预测   总被引:1,自引:0,他引:1  
提出了一种改进的模糊c均值聚类算法,该算法将模糊聚类的对象从单值扩展到区间,在构造二型模糊系统时,通过对历史数据的学习提取二型模糊规则,克服了专家方法不能对未知领域提取规则的不足.在此基础上,针对智能交通系统,提出一种新的基于二型模糊逻辑的交通流量预测方法.该方法应用区间型二型模糊集具有上下限隶属度函数的性质构造预测区间,适合于处理具有复杂不确定性的情况.通过隶属度函数可以反映出该区间中预测值的可靠性,从而克服了其他预测方法仅给出单值且稳定性不高的缺点.仿真结果表明,基于二型模糊逻辑的流量预测区间具有较高的准确度,其平均相对误差低于6%.  相似文献   

19.
摘要: 针对传统交通流预测模型正在由单断面历史数据处理向多断面、多时刻历史数据处理转变,但在考虑各断面间的影响时,多变的交通状况往往会使预测模型复杂化的问题,引入一种多元线性回归最小绝对收缩和选择算子方法(Lasso),并利用其优秀的变量选择能力,在复杂路网多断面中选出相关性较高的断面;结合神经网络(NN)的非线性特性,提出了Lasso NN组合模型.结果表明:Lasso NN模型在路网交叉口对未来15 min交通流数据预测的误差率低于9.2%;在非交叉口的误差率低于6.7%,总体优于各自单独使用得出的结果.  相似文献   

20.
基于交通流理论的道路实际通行能力模型   总被引:1,自引:0,他引:1  
车道被占用会导致道路横断面通行能力在单位时间内降低,从而影响整个路段的交通状况,造成堵车。针对车道被占用问题,基于2013年全国大学生数学建模竞赛A题所提供的道路交通事故监控视频案例的人工观测数据,以对数关系的流量一速度模型为基础,结合交通工程学理论和通行能力修正系数,导出了道路实际通行能力的计算模型。同时根据交通流理论,建立了一个包含上游流量、事故所处横断面实际通行能力、事故持续时间和堵车排队长度的模型,根据其中任意三个量可求解另外一个量。经检验,模型结果和实际交通情况较吻合,且易于操作,具有一定的实际意义和应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号