首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary Loss of cristae and matrix occur in the mitochondria of skeletal muscles prior to any observable changes in myofibrillar proteins during the development of rigor mortis. Care must be observed because ultrastructural changes in mitochondria in some studies may be attributed to a specific trauma, whereas the changes may be due to the lower pH in postmortem muscle.Scientific Journal Series, Paper No. 9633, Minnesota Agricultural Experiment Station.  相似文献   

2.
The genetic code in mitochondria and chloroplasts   总被引:8,自引:0,他引:8  
T H Jukes  S Osawa 《Experientia》1990,46(11-12):1117-1126
The universal genetic code is used without changes in chloroplasts and in mitochondria of green plants. Non-plant mitochondria use codes that include changes from the universal code. Chloroplasts use 31 anticodons in translating the code; a number smaller than that used by bacteria, because chloroplasts have eliminated 10 CNN anticodons that are found in bacteria. Green plant mitochondria (mt) obtain some tRNAs from the cytosol, and genes for some other tRNAs have been acquired from chloroplast DNA. The code in non-plant mt differs from the universal code in the following usages found in various organisms: UGA for Trp, AUA for Met, AGR for Ser and stop, AAA for Asn, CUN for Thr, and possibly UAA for Tyr. CGN codons are not used by Torulopsis yeast mt. Non-plant mt, e.g. in vertebrates, may use a minimum of 22 anticodons for complete translation of mRNA sequences. The following possible causes are regarded as contributing to changes in the non-plant mt: directional mutation pressure, genomic economization, changes in charging specificity of tRNAs, loss of release factor RF2, changes in RF1, changes in anticodons, loss of lysidine-forming enzyme system, and disappearance of codons from coding sequences.  相似文献   

3.
C N Sun 《Experientia》1976,32(5):630-632
In examination of six retinoblastoma tumor specimens, bizzare mitochondria were often found. Some are irregular forms with focal expansion and constrictions. Occasionally, a portion of the mitochondria forms rings. Branching mitochondria are also seen. Other striking features of the mitochondria from tumor cells are the alternation of cristae. Dense bodies are also occasionally observed within the mitochondria. Morphological modifications of the mitochondria may be as results of pathological conditions of the tumor cells.  相似文献   

4.
Summary In examination of six retinoblastoma tumor specimens, bizzare mitochondria were often found. Some are irregular forms with focal expansion and constrictions. Occasionally, a portion of the mitochondria forms rings. Branching mitochondria are also seen. Other striking features of the mitochondria from tumor cells are the alteration of cristae. Dense bodies are also occasionally observed within the mitochondria. Morphological modifications of the mitochondria may be as results of pathological conditions of the tumor cells.  相似文献   

5.
Ceramide has been reported to induce typical apoptotic changes in nuclei incubated in a cell-free system, and that the addition of ceramide bypasses the requirement for mitochondria. Here, we explore the possible pathways by which ceramide induces apoptosis either in intact cells or in a cell-free system which we have developed. We found that in the cell-free system, C2-ceramide is not able to induce apoptosis in nuclei whereas cytochrome c does, but it is able to induce HeLa cells to undergo apoptosis. Ceramide is also not able to induce apoptosis when added into the cell-free system together with purified mitochondria. Further investigation showed that C2-ceramide at certain concentrations greatly increases nuclear apoptosis caused by cytochrome c in the cell-free system. From these results we conclude that the induction of apoptosis by ceramide may require intact cells in which some unknown signal transduction pathways are involved.  相似文献   

6.
Melatonin is an ancient antioxidant. After its initial development in bacteria, it has been retained throughout evolution such that it may be or may have been present in every species that have existed. Even though it has been maintained throughout evolution during the diversification of species, melatonin’s chemical structure has never changed; thus, the melatonin present in currently living humans is identical to that present in cyanobacteria that have existed on Earth for billions of years. Melatonin in the systemic circulation of mammals quickly disappears from the blood presumably due to its uptake by cells, particularly when they are under high oxidative stress conditions. The measurement of the subcellular distribution of melatonin has shown that the concentration of this indole in the mitochondria greatly exceeds that in the blood. Melatonin presumably enters mitochondria through oligopeptide transporters, PEPT1, and PEPT2. Thus, melatonin is specifically targeted to the mitochondria where it seems to function as an apex antioxidant. In addition to being taken up from the circulation, melatonin may be produced in the mitochondria as well. During evolution, mitochondria likely originated when melatonin-forming bacteria were engulfed as food by ancestral prokaryotes. Over time, engulfed bacteria evolved into mitochondria; this is known as the endosymbiotic theory of the origin of mitochondria. When they did so, the mitochondria retained the ability to synthesize melatonin. Thus, melatonin is not only taken up by mitochondria but these organelles, in addition to many other functions, also probably produce melatonin as well. Melatonin’s high concentrations and multiple actions as an antioxidant provide potent antioxidant protection to these organelles which are exposed to abundant free radicals.  相似文献   

7.
The finding that mitochondria contain substrates for protein kinases lead to the discovery that protein kinases are located in the mitochondria of certain tissues and species. These include pyruvate dyhydrogenase kinase, branched-chain α-ketoacid dehydrogenase kinase, protein kinase A, protein kinase Cδ, stress-activated kinase and A-Raf as well as unidentified kinases. Recent evidence suggests that mitochondrial protein kinases may be involved in physiological processes such as apoptosis and steroidogenesis. Additionally, the novel finding of low-molecular-weight GTP-binding proteins in mitochondria suggests the possibility that these may interact with mitochondrial protein kinases to regulate the activity of mitochondrial effector proteins. The fact that there are components of cellular regulatory systems in mitochondria indicates the exciting possibility of undiscovered systems regulating mitochondrial physiology. Received 19 June 2001; received after revision 7 August 2001; accepted 8 August 2001  相似文献   

8.
Formation of myelin sheaths by Schwann cells (SCs) enables rapid and efficient transmission of action potentials in peripheral axons, and disruption of myelination results in disorders that involve decreased sensory and motor functions. Given that construction of SC myelin requires high levels of lipid and protein synthesis, mitochondria, which are pivotal in cellular metabolism, may be potential regulators of the formation and maintenance of SC myelin. Supporting this notion, abnormal mitochondria are found in SCs of neuropathic peripheral nerves in both human patients and the relevant animal models. However, evidence for the importance of SC mitochondria in myelination has been limited, until recently. Several studies have recently used genetic approaches that allow SC-specific ablation of mitochondrial metabolic activity in living animals to show the critical roles of SC mitochondria in the development and maintenance of peripheral nerve axons. Here, we review current knowledge about the involvement of SC mitochondria in the formation and dysfunction of myelinated axons in the peripheral nervous system.  相似文献   

9.
Protein toxicity can be defined as all the pathological changes that ensue from accumulation, mis-localization, and/or multimerization of disease-specific proteins. Most neurodegenerative diseases manifest protein toxicity as one of their key pathogenic mechanisms, the details of which remain unclear. By systematically deconstructing the nature of toxic proteins, we aim to elucidate and illuminate some of the key mechanisms of protein toxicity from which therapeutic insights may be drawn. In this review, we focus specifically on protein toxicity from the point of view of various cellular compartments such as the nucleus and the mitochondria. We also discuss the cell-to-cell propagation of toxic disease proteins that complicates the mechanistic understanding of the disease progression as well as the spatiotemporal point at which to therapeutically intervene. Finally, we discuss selective neuronal vulnerability, which still remains largely enigmatic.  相似文献   

10.
Summary After inducing experimentally a stenosis of the aorta abdominalis in rabbits, the mitochondria of the aortic endothelium were fluorescence-optically demonstrated, and quantitatively investigated above as well as below the stenosis. The changes in the number of the mitochondria are proportional to the values of blood pressure, and are discussed in relation to changes in the shape of the endothelial cells.  相似文献   

11.
A comparative analysis of the cell biology of senescence and aging   总被引:1,自引:0,他引:1  
Various intracellular organelles, such as lysosomes, mitochondria, nuclei, and cytoskeletons, change during replicative senescence, but the utility of these changes as general markers of senescence and their significance with respect to functional alterations have not been comprehensively reviewed. Furthermore, the relevance of these alterations to cellular and functional changes in aging animals is poorly understood. In this paper, we review the studies that report these senescence-associated changes in various aging cells and their underlying mechanisms. Changes associated with lysosomes and mitochondria are found not only in cells undergoing replicative or induced senescence but also in postmitotic cells isolated from aged organisms. In contrast, other changes occur mainly in cells undergoing in vitro senescence. Comparison of age-related changes and their underlying mechanisms in in vitro senescent cells and aged postmitotic cells would reveal the relevance of replicative senescence to the physiological processes occurring in postmitotic cells as individuals age.  相似文献   

12.
To establish the role of mitochondrial subpopulations in the mitochondrial maturation process, we studied morphological and functional changes in the mitochondria of different mammalian conceptus tissues during the organogenic and the placentation processes. Mitochondrial subpopulations of three different conceptus tissues, embryo and visceral yolk sac placenta on gestational days 11, 12 and 13 and placenta on days 12 and 13, were examined morphologically by transmission electron microscopy. Cytochrome oxidase activity and protein levels were also measured in each mitochondrial subpopulation. The results indicate two different mitochondrial subpopulation profiles: a homogeneous one, which corresponds to immature mitochondria, and a heterogeneous one, which represents the mature mitochondria. The three tissues studied show different morphologic and metabolic patterns of mitochondrial maturation during the placentation process, rendering them suitable as experimental models to establish the p ossible relationship between mitochondrial maturation and the mitochondrial subpopulations. Received 5 August 2002; received after revision 23 September 2002; accepted 8 October 2002 RID="*" ID="*"Corresponding author.  相似文献   

13.
Mitochondria are highly dynamic and functionally versatile organelles that continuously fragment and fuse in response to different physiological needs of the cell. The list of proteins that strictly regulate the morphology of these organelles is constantly growing, adding new players every day and new pieces to the comprehension and elucidation of this complex machinery. The structural complexity of mitochondria is only paralled by their functional versatility. Indeed, changes in mitochondria shape play critical roles in vertebrate development programmed cell death and in various processes of normal cell physiology, such as calcium signaling, reactive oxygen species production, and lifespan. Here, we present the latest findings on the regulation of mitochondrial dynamics and some of their physiological roles, focusing on cell migration. In cells where migration represents a crucial function in their physiology, such as T and tumoral metastatic cells, mitochondria need to be fragmented and recruited to specific subcellular regions to make movement possible. In depth analysis of this role of mitochondrial dynamics should help in identifying potential targeted therapy against cancer or in improving the immune system’s efficiency.  相似文献   

14.
Genetic code 1990. Outlook   总被引:2,自引:0,他引:2  
T H Jukes 《Experientia》1990,46(11-12):1149-1157
The genetic code is evolving as shown by 9 departures from the universal code: 6 of them are in mitochondria and 3 are in nuclear codes. We propose that these changes are preceded by disappearance of a codon from coding sequences in mRNA of an organism or organelle. The function of the codon that disappears is taken by other, synonymous codons, so that there is no change in amino acid sequences of proteins. The deleted codon then reappears with a new function. Wobble pairing between anticodons and codons has evolved, starting with a single UNN anticodon pairing with 4 codons. Directional mutation pressure affects codon usage and may produce codon reassignments, especially of stop codons. Selenocysteine is coded by UGA, which is also a stop codon, and this anomaly is discussed. The outlook for discovery of more changes in the code is favorable, and open reading frames should be compared with actual sequential analyses of protein molecules in this search.  相似文献   

15.
This study was designed to examine the effect of youth-adulthood transition on hepatic mitochondrial energy efficiency. The changes in basal and palmitate-induced proton leak, which contribute to mitochondrial efficiency, were evaluated in mitochondria isolated from the liver of young and adult rats. Alterations in mitochondrial cytochrome oxidase and aconitase specific activities, and in adenine nucleotide translocator content were also assessed. There was no difference in basal proton leak or thermodynamic coupling and efficiency of oxidative phosphorylation in liver mitochondria between the two rat groups. On the other hand, palmitate-induced proton leak increased significantly in adult rats. The function of this uncoupling could be avoidance of elevated formation of reactive oxygen species, which are known to accelerate ageing.Received 17 February 2004; received after revision 30 March 2004; accepted 1 April 2004  相似文献   

16.
Articular manifestations may be the onset of genetic alpha galactosidase deficiency (Fabry's disease). Ultrastructural study shows typical osmiophilic lamellar inclusions of trihexosylceramides in synoviocytes, capillaries and adipocytes. Furthermore microcrystals identical to those seen in Gaucher's disease and type II hyperlipoproteinemia were observed in mitochondria and free in cytoplasm. These data suggest a microcrystalline pathogenesis of these arthropathies, as in gout and chondrocalcinosis, and what we have generally called crystallopathic arthropathies.  相似文献   

17.
Serum concentrations of T4 and T3 in 2 year-old Rats were decreased by about 30% compared to 2 month-old animals, but rT3 was similar. Activities of old Rats' liver mitochondria were near those of young thyroidectomized animals. Low circulating T3 partly explains metabolic changes observed during senescence.  相似文献   

18.
K Kawai  T Akita  Y Nozawa 《Experientia》1978,34(8):977-978
Direct evidence is provided for the transmembrane permeation of xanthomegnin across phospholipid bilayer membranes using ascorbate-loaded liposomes. This process may be associated with an uncoupling effect on the oxidative phosphorylation of mitochondria.  相似文献   

19.
Summary Direct evidence is provided for the transmembrane permeation of xanthomegnin across phospholipid bilayer mebranes using ascorbate-loaded liposomes. This process may be associated with an uncoupling effect on the oxidative phosphorylation of mitochondria.  相似文献   

20.
Mitochondrial dysfunction and protein kinase C (PKC) activation are consistently found in diabetic cardiomyopathy but their relationship remains unclear. This study identified mitochondrial aconitase as a downstream target of PKC activation using immunoblotting and mass spectrometry, and then characterized phosphorylation-induced changes in its activity in hearts from type 1 diabetic rats. PKCβ2 co-immunoprecipitated with phosphorylated aconitase from mitochondria isolated from diabetic hearts. Augmented phosphorylation of mitochondrial aconitase in diabetic hearts was found to be associated with an increase in its reverse activity (isocitrate to aconitate), while the rate of the forward activity was unchanged. Similar results were obtained on phosphorylation of mitochondrial aconitase by PKCβ2 in vitro. These results demonstrate the regulation of mitochondrial aconitase activity by PKC-dependent phosphorylation. This may influence the activity of the tricarboxylic acid cycle, and contribute to impaired mitochondrial function and energy metabolism in diabetic hearts. Received 31 October 2008; received after revision 17 December 2008; accepted 2 January 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号