首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required.  相似文献   

2.
Type 1 diabetes (T1D) is a debilitating autoimmune disease that results from T-cell-mediated destruction of insulin-producing beta-cells. Its incidence has increased during the past several decades in developed countries, suggesting that changes in the environment (including the human microbial environment) may influence disease pathogenesis. The incidence of spontaneous T1D in non-obese diabetic (NOD) mice can be affected by the microbial environment in the animal housing facility or by exposure to microbial stimuli, such as injection with mycobacteria or various microbial products. Here we show that specific pathogen-free NOD mice lacking MyD88 protein (an adaptor for multiple innate immune receptors that recognize microbial stimuli) do not develop T1D. The effect is dependent on commensal microbes because germ-free MyD88-negative NOD mice develop robust diabetes, whereas colonization of these germ-free MyD88-negative NOD mice with a defined microbial consortium (representing bacterial phyla normally present in human gut) attenuates T1D. We also find that MyD88 deficiency changes the composition of the distal gut microbiota, and that exposure to the microbiota of specific pathogen-free MyD88-negative NOD donors attenuates T1D in germ-free NOD recipients. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a critical epigenetic factor modifying T1D predisposition.  相似文献   

3.
The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1-3.0?μm size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.  相似文献   

4.
The mammalian immune system has an extraordinary potential for making receptors that sense and neutralize any chemical entity entering the body. Inevitably, some of these receptors recognize components of our own body, and so cellular mechanisms have evolved to control the activity of these 'forbidden' receptors and achieve immunological self tolerance. Many of the genes and proteins involved are conserved between humans and other mammals. This provides the bridge between clinical studies and mechanisms defined in experimental animals to understand how sets of gene products coordinate self-tolerance mechanisms and how defects in these controls lead to autoimmune disease.  相似文献   

5.
土壤微生物多样性与植物多样性   总被引:10,自引:0,他引:10  
土壤中生活着丰富的微生物类群,是一个重要的地下生物宝库.土壤微生物是土壤中的主要分解者,对环境起着天然的“过滤”和“净化”作用,在自然生态系统的功能发挥和维持能力方面极其重要.植物、土壤和微生物相互作用,构成了一个植物-土壤-微生物的有机整体.土壤微生物多样性代表着微生物群落的稳定性,指生命体在遗传、种类和生态系统层次上的变化.从遗传、分类、生态功能以及系统发育等多方面阐述了当前土壤微生物多样性的研究工作.同时探讨了植物多样性与土壤微生物多样性之间的内在联系,植被的破坏可直接导致土壤微生物多样性的丧失,而土壤微生物对植物物种多样性的维持又具有重要作用.因此,加强土壤微生物多样性研究对植物多样性保护具有重要意义.  相似文献   

6.
Beutler B 《Nature》2004,430(6996):257-263
The Toll-like receptors (TLRs) are the key proteins that allow mammals--whether immunologically naive or experienced--to detect microbes. They lie at the core of our inherited resistance to disease, initiating most of the phenomena that occur in the course of infection. Quasi-infectious stimuli that have been used for decades to study inflammatory mechanisms can activate the TLR family of proteins. And it now seems that many inflammatory processes, both sterile and infectious, may depend on TLR signalling. We are in a good position to apply our understanding of TLR signalling to a range of challenges in immunology and medicine.  相似文献   

7.
Semiconducting nanowires have the potential to function as highly sensitive and selective sensors for the label-free detection of low concentrations of pathogenic microorganisms. Successful solution-phase nanowire sensing has been demonstrated for ions, small molecules, proteins, DNA and viruses; however, 'bottom-up' nanowires (or similarly configured carbon nanotubes) used for these demonstrations require hybrid fabrication schemes, which result in severe integration issues that have hindered widespread application. Alternative 'top-down' fabrication methods of nanowire-like devices produce disappointing performance because of process-induced material and device degradation. Here we report an approach that uses complementary metal oxide semiconductor (CMOS) field effect transistor compatible technology and hence demonstrate the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response. This approach eliminates the need for hybrid methods and enables system-scale integration of these sensors with signal processing and information systems. Additionally, the ability to monitor antibody binding and sense the cellular immune response in real time with readily available technology should facilitate widespread diagnostic applications.  相似文献   

8.
 空间站环境控制与生命保障(环控生保)系统微重力条件下,空间站密闭狭小舱内的真菌和细菌等微生物主要来自航天员生理代谢产生的废物(尿液、粪便),日常生活和工作中形成的废弃物,以及在密闭生态系统中进行食物、气和水反复净化和再生处理所应用的微生物。空间站环控生保系统中的水、冷凝水、废水等介质中极易滋生微生物,并通过微生物产生具有腐蚀性的代谢产物,如硫酸、有机酸、硫化物和氨等,恶化金属材料腐蚀的环境。本文综述了微重力条件下的微生物生物效应、空间站材料微生物腐蚀行为、材料微生物腐蚀防护技术等3个方面,讨论了太空特殊的微重力环境下微生物生理生化性状的变化及其与材料间的复杂相互作用,认为开展微重力条件下相关材料的微生物腐蚀实验研究,明确生物膜的形成及其腐蚀作用机制,开发新型抗微生物防护材料体系,对保障空间站环控生保系统材料安全服役具有重要意义。  相似文献   

9.
Zhao Y  Yang J  Shi J  Gong YN  Lu Q  Xu H  Liu L  Shao F 《Nature》2011,477(7366):596-600
Inflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood. Here we show that NAIP5, a BIR-domain NLR protein required for Legionella pneumophila replication in mouse macrophages, is a universal component of the flagellin-NLRC4 pathway. NAIP5 directly and specifically interacted with flagellin, which determined the inflammasome-stimulation activities of different bacterial flagellins. NAIP5 engagement by flagellin promoted a physical NAIP5-NLRC4 association, rendering full reconstitution of a flagellin-responsive NLRC4 inflammasome in non-macrophage cells. The related NAIP2 functioned analogously to NAIP5, serving as a specific inflammasome receptor for TTSS rod proteins such as Salmonella PrgJ and Burkholderia BsaK. Genetic analysis of Chromobacterium violaceum infection revealed that the TTSS needle protein CprI can stimulate NLRC4 inflammasome activation in human macrophages. Similarly, CprI is specifically recognized by human NAIP, the sole NAIP family member in human. The finding that NAIP proteins are inflammasome receptors for bacterial flagellin and TTSS apparatus components further predicts that the remaining NAIP family members may recognize other unidentified microbial products to activate NLRC4 inflammasome-mediated innate immunity.  相似文献   

10.
植物天然免疫系统研究进展   总被引:2,自引:1,他引:1  
很多植物病原菌严重地损害植物的生长和繁殖。植物与病原体协同进化过程中,也逐渐形成了一系列复杂高效的保护机制来抵御病原物的侵染。植物中抵抗外界微生物刺激所形成的系统被称为植物天然免疫系统,可分为两个层次。第1个层次是植物模式识别受体(PRRs)识别病原相关分子模式(PAMPs),触发病原相关分子模式触发的免疫反应(PTI),激活植物体中促丝裂原活化蛋白激酶(MAPK)信号通路使植物产生早期应答反应。PTI适应性较广,可识别和响应包括非致病菌的许多类微生物。第2个层次是病原菌产生效应因子抑制基础免疫响应PTI,而植物产生针对性更强的抗性蛋白(R蛋白)识别效应因子,并通过效应因子触发型免疫(ETI)来重建植物的抗性。笔者综述了近年来植物天然免疫系统的研究进展,认为随着对植物天然免疫系统研究的深入,应重视PTI和ETI的结合利用,有效扩大植物抗菌谱,改良植物ETI抗性。  相似文献   

11.
Hu S  Chapin FS  Firestone MK  Field CB  Chiariello NR 《Nature》2001,409(6817):188-191
Carbon accumulation in the terrestrial biosphere could partially offset the effects of anthropogenic CO2 emissions on atmospheric CO2. The net impact of increased CO2 on the carbon balance of terrestrial ecosystems is unclear, however, because elevated CO2 effects on carbon input to soils and plant use of water and nutrients often have contrasting effects on microbial processes. Here we show suppression of microbial decomposition in an annual grassland after continuous exposure to increased CO2 for five growing seasons. The increased CO2 enhanced plant nitrogen uptake, microbial biomass carbon, and available carbon for microbes. But it reduced available soil nitrogen, exacerbated nitrogen constraints on microbes, and reduced microbial respiration per unit biomass. These results indicate that increased CO2 can alter the interaction between plants and microbes in favour of plant utilization of nitrogen, thereby slowing microbial decomposition and increasing ecosystem carbon accumulation.  相似文献   

12.
Pentraxins are a superfamily of conserved proteins that are characterized by a cyclic multimeric structure. The classical short pentraxins, C-reactive protein (CRP) and serum amyloid P component (SAP), are acute-phase proteins produced in the liver in response to inflammatory mediators. Short pentraxins regulate innate resistance to microbes and the scavenging of cellular debris and extracellular matrix components. In contrast, long pentraxins have an unrelated, long amino-terminal domain coupled to the carboxy-terminal pentraxin domain, and differ, with respect to short pentraxins, in their gene organization, chromosomal localization, cellular source, and in their stimuli-inducing and ligand-recognition ability. To investigate the in vivo function of the long pentraxin PTX3, we generated mice deficient in Ptx3 by homologous recombination. Ptx3-null mice were susceptible to invasive pulmonary aspergillosis. Ptx3 binds selected microbial agents, including conidia of Aspergillus fumigatus, and we found that susceptibility of Ptx3-null mice was associated with defective recognition of conidia by alveolar macrophages and dendritic cells, as well as inappropriate induction of an adaptive type 2 response. Thus, the long pentraxin Ptx3 is a secreted pattern-recognition receptor that has a non-redundant role in resistance to selected microbial agents, in particular to the opportunistic fungal pathogen Aspergillus fumigatus.  相似文献   

13.
Structure, function and diversity of the healthy human microbiome   总被引:2,自引:0,他引:2  
Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat's signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81-99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.  相似文献   

14.
食用菌生产中微生物灾害的分类及防治   总被引:4,自引:0,他引:4  
病原菌与污染杂菌的发生和生长已成为影响食用菌生产的重要问题。介绍了食用菌生产过程中微生物灾害的来源,对其危害、预防和控制方法进行了探讨,以期对保证食用菌的质量和产量起到促进作用。  相似文献   

15.
GM Weinstock 《Nature》2012,489(7415):250-256
The human body is colonized by a vast array of microbes, which form communities of bacteria, viruses and microbial eukaryotes that are specific to each anatomical environment. Every community must be studied as a whole because many organisms have never been cultured independently, and this poses formidable challenges. The advent of next-generation DNA sequencing has allowed more sophisticated analysis and sampling of these complex systems by culture-independent methods. These methods are revealing differences in community structure between anatomical sites, between individuals, and between healthy and diseased states, and are transforming our view of human biology.  相似文献   

16.
北海市空气微生物含量时空分布   总被引:13,自引:0,他引:13       下载免费PDF全文
陈皓文 《广西科学》1998,5(2):83-86
于1996/1997年之交研究了广西北海市空气微生物含量及其分布特征,结果表明北海市室外空气细菌、真菌及总微生物含量分别为5709.7CFU/m3、1847.1CFU/m3和7556.8CFU/m3。已超过了相关规定的轻度空气污染程度。客房空气质量较好。空气微生物含量显出的测点差意味着北海市闹市区空气质量一般差于非闹市区,随离陆地采样高度的抬升,空气微生物呈减少之势,其昼夜变化特征表现出空气细菌及总量在下午达峰值,上午次之,晨间为谷,而空气真菌在中午峰值之前出现低谷。空气细菌、空气真菌和空气微生物总量与气温间分别有显著正相关关系。北海市空气微生物含量变化显出不全同于我国一些亚热带或内陆城市的势态。  相似文献   

17.
物联网是连接物理世界与数字世界的纽带,是泛在感知与计算关键使能技术。物联网的大规模部署受到了传感器能耗、部署及维护成本的限制。因此,如何突破上述约束的桎梏成为了学术界和工业界共同关注的问题。反向散射通信技术因其使得传感器不需要装配电池而是从周围环境的无线信号中捕获能量用于计算和通信,成为了解决问题的突破口,推动了无源物联网的出现。针对无源物联网近几年的发展进行总结,以反向散射系统为切入点,讨论了利用无源物联网对环境和物品感知的应用场景和感知方法,归纳了无源物联网络中节点组网的接入方式以及接入协议设计,介绍了传感器的监测管理种类与方法。针对现有无源物联网的特点,预测了未来的发展趋势以及面临的挑战。  相似文献   

18.
Park PW  Pier GB  Hinkes MT  Bernfield M 《Nature》2001,411(6833):98-102
Cell-surface heparan sulphate proteoglycans (HSPGs) are ubiquitous and abundant receptors/co-receptors of extracellular ligands, including many microbes. Their role in microbial infections is poorly defined, however, because no cell-surface HSPG has been clearly connected to the pathogenesis of a particular microbe. We have previously shown that Pseudomonas aeruginosa, through its virulence factor LasA, enhances the in vitro shedding of syndecan-1-the predominant cell-surface HSPG of epithelia. Here we show that shedding of syndecan-1 is also activated by P. aeruginosa in vivo, and that the resulting syndecan-1 ectodomains enhance bacterial virulence in newborn mice. Newborn mice deficient in syndecan-1 resist P. aeruginosa lung infection but become susceptible when given purified syndecan-1 ectodomains or heparin, but not when given ectodomain core protein, indicating that the ectodomain's heparan sulphate chains are the effectors. In wild-type newborn mice, inhibition of syndecan-1 shedding or inactivation of the shed ectodomain's heparan sulphate chains prevents lung infection. Our findings uncover a pathogenetic mechanism in which a host response to tissue injury-syndecan-1 shedding-is exploited to enhance microbial virulence apparently by modulating host defences.  相似文献   

19.
D M Ward  R Weller  M M Bateson 《Nature》1990,345(6270):63-65
Microbiologists have been constrained in their efforts to describe the compositions of natural microbial communities using traditional methods. Few microorganisms have sufficiently distinctive morphology to be recognized by microscopy. Culture-dependent methods are biased, as a microorganism can be cultivated only after its physiological niche is perceived and duplicated experimentally. It is therefore widely believed that fewer than 20% of the extant microorganisms have been discovered, and that culture methods are inadequate for studying microbial community composition. In view of the physiological and phylogenetic diversity among microorganisms, speculation that 80% or more of microbes remain undiscovered raises the question of how well we know the Earth's biota and its biochemical potential. We have performed a culture-independent analysis of the composition of a well-studied hot spring microbial community, using a common but distinctive cellular component, 16S ribosomal RNA. Our results confirm speculations about the diversity of uncultured microorganisms it contains.  相似文献   

20.
The sense of taste provides animals with valuable information about the nature and quality of food. Bitter taste detection functions as an important sensory input to warn against the ingestion of toxic and noxious substances. T2Rs are a family of approximately 30 highly divergent G-protein-coupled receptors (GPCRs) that are selectively expressed in the tongue and palate epithelium and are implicated in bitter taste sensing. Here we demonstrate, using a combination of genetic, behavioural and physiological studies, that T2R receptors are necessary and sufficient for the detection and perception of bitter compounds, and show that differences in T2Rs between species (human and mouse) can determine the selectivity of bitter taste responses. In addition, we show that mice engineered to express a bitter taste receptor in 'sweet cells' become strongly attracted to its cognate bitter tastants, whereas expression of the same receptor (or even a novel GPCR) in T2R-expressing cells resulted in mice that are averse to the respective compounds. Together these results illustrate the fundamental principle of bitter taste coding at the periphery: dedicated cells act as broadly tuned bitter sensors that are wired to mediate behavioural aversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号