首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Haploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation. Neutralizing Dll4 with a Dll4-selective antibody rendered endothelial cells hyperproliferative, and caused defective cell fate specification or differentiation both in vitro and in vivo. In addition, blocking Dll4 inhibited tumour growth in several tumour models. Remarkably, antibodies against Dll4 and antibodies against vascular endothelial growth factor (VEGF) had paradoxically distinct effects on tumour vasculature. Our data also indicate that Dll4-mediated Notch signalling is crucial during active vascularization, but less important for normal vessel maintenance. Furthermore, unlike blocking Notch signalling globally, neutralizing Dll4 had no discernable impact on intestinal goblet cell differentiation, supporting the idea that Dll4-mediated Notch signalling is largely restricted to the vascular compartment. Therefore, targeting Dll4 might represent a broadly efficacious and well-tolerated approach for the treatment of solid tumours.  相似文献   

2.
Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 (also known as FLT-4) is present in all endothelia during development, and in the adult it becomes restricted to the lymphatic endothelium. However, VEGFR-3 is upregulated in the microvasculature of tumours and wounds. Here we demonstrate that VEGFR-3 is highly expressed in angiogenic sprouts, and genetic targeting of VEGFR-3 or blocking of VEGFR-3 signalling with monoclonal antibodies results in decreased sprouting, vascular density, vessel branching and endothelial cell proliferation in mouse angiogenesis models. Stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and sustained angiogenesis even in the presence of VEGFR-2 (also known as KDR or FLK-1) inhibitors, whereas antibodies against VEGFR-3 and VEGFR-2 in combination resulted in additive inhibition of angiogenesis and tumour growth. Furthermore, genetic or pharmacological disruption of the Notch signalling pathway led to widespread endothelial VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3 signals. Our results implicate VEGFR-3 as a regulator of vascular network formation. Targeting VEGFR-3 may provide additional efficacy for anti-angiogenic therapies, especially towards vessels that are resistant to VEGF or VEGFR-2 inhibitors.  相似文献   

3.
Angiogenesis is critical during tumour initiation and malignant progression. Different strategies aimed at blocking vascular endothelial growth factor (VEGF) and its receptors have been developed to inhibit angiogenesis in cancer patients. It has become increasingly clear that in addition to its effect on angiogenesis, other mechanisms including a direct effect of VEGF on tumour cells may account for the efficiency of VEGF-blockade therapies. Cancer stem cells (CSCs) have been described in various cancers including squamous tumours of the skin. Here we use a mouse model of skin tumours to investigate the impact of the vascular niche and VEGF signalling on controlling the stemness (the ability to self renew and differentiate) of squamous skin tumours during the early stages of tumour progression. We show that CSCs of skin papillomas are localized in a perivascular niche, in the immediate vicinity of endothelial cells. Furthermore, blocking VEGFR2 caused tumour regression not only by decreasing the microvascular density, but also by reducing CSC pool size and impairing CSC renewal properties. Conditional deletion of Vegfa in tumour epithelial cells caused tumours to regress, whereas VEGF overexpression by tumour epithelial cells accelerated tumour growth. In addition to its well-known effect on angiogenesis, VEGF affected skin tumour growth by promoting cancer stemness and symmetric CSC division, leading to CSC expansion. Moreover, deletion of neuropilin-1 (Nrp1), a VEGF co-receptor expressed in cutaneous CSCs, blocked VEGF's ability to promote cancer stemness and renewal. Our results identify a dual role for tumour-cell-derived VEGF in promoting cancer stemness: by stimulating angiogenesis in a paracrine manner, VEGF creates a perivascular niche for CSCs, and by directly affecting CSCs through Nrp1 in an autocrine loop, VEGF stimulates cancer stemness and renewal. Finally, deletion of Nrp1 in normal epidermis prevents skin tumour initiation. These results may have important implications for the prevention and treatment of skin cancers.  相似文献   

4.
In sprouting angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. VEGF-A is also essential for the induction of endothelial tip cells, but it is not known how single tip cells are selected to lead each vessel sprout, and how tip-cell numbers are determined. Here we present evidence that delta-like 4 (Dll4)-Notch1 signalling regulates the formation of appropriate numbers of tip cells to control vessel sprouting and branching in the mouse retina. We show that inhibition of Notch signalling using gamma-secretase inhibitors, genetic inactivation of one allele of the endothelial Notch ligand Dll4, or endothelial-specific genetic deletion of Notch1, all promote increased numbers of tip cells. Conversely, activation of Notch by a soluble jagged1 peptide leads to fewer tip cells and vessel branches. Dll4 and reporters of Notch signalling are distributed in a mosaic pattern among endothelial cells of actively sprouting retinal vessels. At this location, Notch1-deleted endothelial cells preferentially assume tip-cell characteristics. Together, our results suggest that Dll4-Notch1 signalling between the endothelial cells within the angiogenic sprout serves to restrict tip-cell formation in response to VEGF, thereby establishing the adequate ratio between tip and stalk cells required for correct sprouting and branching patterns. This model offers an explanation for the dose-dependency and haploinsufficiency of the Dll4 gene, and indicates that modulators of Dll4 or Notch signalling, such as gamma-secretase inhibitors developed for Alzheimer's disease, might find usage as pharmacological regulators of angiogenesis.  相似文献   

5.
K H Plate  G Breier  H A Weich  W Risau 《Nature》1992,359(6398):845-848
Clinical and experimental studies suggest that angiogenesis is a prerequisite for solid tumour growth. Several growth factors with mitogenic or chemotactic activity for endothelial cells in vitro have been described, but it is not known whether these mediate tumour vascularization in vivo. Glioblastoma, the most common and most malignant brain tumour in humans, is distinguished from astrocytoma by the presence of necroses and vascular proliferations. Here we show that expression of an endothelial cell-specific mitogen, vascular endothelial growth factor (VEGF), is induced in astrocytoma cells but is dramatically upregulated in two apparently different subsets of glioblastoma cells. The high-affinity tyrosine kinase receptor for VEGF, flt, although not expressed in normal brain endothelium, is upregulated in tumour endothelial cells in vivo. These observations strongly support the concept that tumour angiogenesis is regulated by paracrine mechanisms and identify VEGF as a potential tumour angiogenesis factor in vivo.  相似文献   

6.
Essential role for oncogenic Ras in tumour maintenance.   总被引:30,自引:0,他引:30  
Advanced malignancy in tumours represents the phenotypic endpoint of successive genetic lesions that affect the function and regulation of oncogenes and tumour-suppressor genes. The established tumour is maintained through complex and poorly understood host-tumour interactions that guide processes such as angiogenesis and immune sequestration. The many different genetic alterations that accompany tumour genesis raise questions as to whether experimental cancer-promoting mutations remain relevant during tumour maintenance. Here we show that melanoma genesis and maintenance are strictly dependent upon expression of H-RasV12G in a doxycycline-inducible H-Ras12G mouse melanoma model null for the tumour suppressor INK4a. Withdrawal of doxycycline and H-RasV12G down-regulation resulted in clinical and histological regression of primary and explanted tumours. The initial stages of regression involved marked apoptosis in the tumour cells and host-derived endothelial cells. Although the regulation of vascular endothelial growth factor (VEGF) was found to be Ras-dependent in vitro, the failure of persistent endogenous and enforced VEGF expression to sustain tumour viability indicates that the tumour-maintaining actions of activated Ras extend beyond the regulation of VEGF expression in vivo. Our results provide genetic evidence that H-RasV12G is important in both the genesis and maintenance of solid tumours.  相似文献   

7.
Angiogenesis does not only depend on endothelial cell invasion and proliferation: it also requires pericyte coverage of vascular sprouts for vessel stabilization. These processes are coordinated by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) through their cognate receptors on endothelial cells and vascular smooth muscle cells (VSMCs), respectively. PDGF induces neovascularization by priming VSMCs/pericytes to release pro-angiogenic mediators. Although VEGF directly stimulates endothelial cell proliferation and migration, its role in pericyte biology is less clear. Here we define a role for VEGF as an inhibitor of neovascularization on the basis of its capacity to disrupt VSMC function. Specifically, under conditions of PDGF-mediated angiogenesis, VEGF ablates pericyte coverage of nascent vascular sprouts, leading to vessel destabilization. At the molecular level, VEGF-mediated activation of VEGF-R2 suppresses PDGF-Rbeta signalling in VSMCs through the assembly of a previously undescribed receptor complex consisting of PDGF-Rbeta and VEGF-R2. Inhibition of VEGF-R2 not only prevents assembly of this receptor complex but also restores angiogenesis in tissues exposed to both VEGF and PDGF. Finally, genetic deletion of tumour cell VEGF disrupts PDGF-Rbeta/VEGF-R2 complex formation and increases tumour vessel maturation. These findings underscore the importance of VSMCs/pericytes in neovascularization and reveal a dichotomous role for VEGF and VEGF-R2 signalling as both a promoter of endothelial cell function and a negative regulator of VSMCs and vessel maturation.  相似文献   

8.
9.
Weis SM  Cheresh DA 《Nature》2005,437(7058):497-504
Although vascular endothelial growth factor (VEGF) induces angiogenesis, it also disrupts vascular barrier function in diseased tissues. Accordingly, VEGF expression in cancer and ischaemic disease has unexpected pathophysiological consequences. By uncoupling endothelial cell-cell junctions VEGF causes vascular permeability and oedema, resulting in extensive injury to ischaemic tissues after stroke or myocardial infarction. In cancer, VEGF-mediated disruption of the vascular barrier may potentiate tumour cell extravasation, leading to widespread metastatic disease. Therefore, by blocking the vascular permeability promoting effects of VEGF it may be feasible to reduce tissue injury after ischaemic disease and minimize the invasive properties of circulating tumour cells.  相似文献   

10.
Angiogenesis and the development of a vascular network are required for tumour progression, and they involve the release of angiogenic factors, including vascular endothelial growth factor (VEGF-A), from both malignant and stromal cell types. Infiltration by cells of the myeloid lineage is a hallmark of many tumours, and in many cases the macrophages in these infiltrates express VEGF-A. Here we show that the deletion of inflammatory-cell-derived VEGF-A attenuates the formation of a typical high-density vessel network, thus blocking the angiogenic switch in solid tumours in mice. Vasculature in tumours lacking myeloid-cell-derived VEGF-A was less tortuous, with increased pericyte coverage and decreased vessel length, indicating vascular normalization. In addition, loss of myeloid-derived VEGF-A decreases the phosphorylation of VEGF receptor 2 (VEGFR2) in tumours, even though overall VEGF-A levels in the tumours are unaffected. However, deletion of myeloid-cell VEGF-A resulted in an accelerated tumour progression in multiple subcutaneous isograft models and an autochthonous transgenic model of mammary tumorigenesis, with less overall tumour cell death and decreased tumour hypoxia. Furthermore, loss of myeloid-cell VEGF-A increased the susceptibility of tumours to chemotherapeutic cytotoxicity. This shows that myeloid-derived VEGF-A is essential for the tumorigenic alteration of vasculature and signalling to VEGFR2, and that these changes act to retard, not promote, tumour progression.  相似文献   

11.
Glioblastoma is a highly angiogenetic malignancy, the neoformed vessels of which are thought to arise by sprouting of pre-existing brain capillaries. The recent demonstration that a population of glioblastoma stem-like cells (GSCs) maintains glioblastomas indicates that the progeny of these cells may not be confined to the neural lineage. Normal neural stem cells are able to differentiate into functional endothelial cells. The connection between neural stem cells and the endothelial compartment seems to be critical in glioblastoma, where cancer stem cells closely interact with the vascular niche and promote angiogenesis through the release of vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (refs 5-9). Here we show that a variable number (range 20-90%, mean 60.7%) of endothelial cells in glioblastoma carry the same genomic alteration as tumour cells, indicating that a significant portion of the vascular endothelium has a neoplastic origin. The vascular endothelium contained a subset of tumorigenic cells that produced highly vascularized anaplastic tumours with areas of vasculogenic mimicry in immunocompromised mice. In vitro culture of GSCs in endothelial conditions generated progeny with phenotypic and functional features of endothelial cells. Likewise, orthotopic or subcutaneous injection of GSCs in immunocompromised mice produced tumour xenografts, the vessels of which were primarily composed of human endothelial cells. Selective targeting of endothelial cells generated by GSCs in mouse xenografts resulted in tumour reduction and degeneration, indicating the functional relevance of the GSC-derived endothelial vessels. These findings describe a new mechanism for tumour vasculogenesis and may explain the presence of cancer-derived endothelial-like cells in several malignancies.  相似文献   

12.
13.
Aquaporin-1 (AQP1) is a water channel protein expressed widely in vascular endothelia, where it increases cell membrane water permeability. The role of AQP1 in endothelial cell function is unknown. Here we show remarkably impaired tumour growth in AQP1-null mice after subcutaneous or intracranial tumour cell implantation, with reduced tumour vascularity and extensive necrosis. A new mechanism for the impaired angiogenesis was established from cell culture studies. Although adhesion and proliferation were similar in primary cultures of aortic endothelia from wild-type and from AQP1-null mice, cell migration was greatly impaired in AQP1-deficient cells, with abnormal vessel formation in vitro. Stable transfection of non-endothelial cells with AQP1 or with a structurally different water-selective transporter (AQP4) accelerated cell migration and wound healing in vitro. Motile AQP1-expressing cells had prominent membrane ruffles at the leading edge with polarization of AQP1 protein to lamellipodia, where rapid water fluxes occur. Our findings support a fundamental role of water channels in cell migration, which is central to diverse biological phenomena including angiogenesis, wound healing, tumour spread and organ regeneration.  相似文献   

14.
电刺激小脑顶核促脑缺血后血管内皮生长因子表达的意义   总被引:6,自引:0,他引:6  
探讨电刺激小脑顶核(FNS)对局部脑缺血后血管内皮生长因子(VEGF)表达和毛细血管新生的影响.以线栓法制成大鼠右侧大脑中动脉梗塞模型(MCAO),大鼠随机分为假手术对照组、MCAO组、电刺激小脑顶(MCAO FNS)干预组,以免疫组织化学法检测VEGF、内皮细胞阳性表达及毛细血管记数,大脑中动脉梗塞后,缺血区神经元变性、坏死,VEGF、内皮细胞在半暗带有少量表达,毛细血管数较对照组增加,经电刺激小脑顶核干预后,VEGF、内皮细胞大量表达,毛细血管数目明显增加,有统计学差异.电刺激小脑顶核可通过促VEGF表达、内皮细胞增殖,从而促进毛细血管新生。  相似文献   

15.
The vasculature of solid tumours is morphologically aberrant and characterized by dilated and fragile vessels, intensive vessel sprouting and loss of hierarchical architecture. Constant vessel remodelling leads to spontaneous haemorrhages and increased interstitial fluid pressure in the tumour environment. Tumour-related angiogenesis supports tumour growth and is also a major obstacle for successful immune therapy as it prevents migration of immune effector cells into established tumour parenchyma. The molecular mechanisms for these angiogenic alterations are largely unknown. Here we identify regulator of G-protein signalling 5 (Rgs5) as a master gene responsible for the abnormal tumour vascular morphology in mice. Loss of Rgs5 results in pericyte maturation, vascular normalization and consequent marked reductions in tumour hypoxia and vessel leakiness. These vascular and intratumoral changes enhance influx of immune effector cells into tumour parenchyma and markedly prolong survival of tumour-bearing mice. This is the first demonstration, to our knowledge, of reduced tumour angiogenesis and improved immune therapeutic outcome on loss of a vascular gene function and establishes a previously unrecognized role of G-protein signalling in tumour angiogenesis.  相似文献   

16.
血管内皮生长因子研究进展   总被引:1,自引:0,他引:1  
血管内皮生长因子是一种有效的血管形成和血管通透性诱导因子,特异性地作用于血管内皮细胞,具有维持血管正常状态和完整性、增加血管通透性、促进血管生成的作用。在正常成人和动物组织中表达水平较低,一些代谢旺盛、血供丰富的组织中VEGF表达水平略高,一些病理情况下可以过度表达。  相似文献   

17.
目的:探讨血管内皮生长因子(VEGF)在急性白血病及其骨髓的新生血管之间的关系,为白血病的治疗寻找新的治疗方法。方法:查阅总结近15年来国内外相关文献,对VEGF的性质作用特点以及与急性白血病的关系进行综述。结果:白血病细胞表达较高的VEGF,VEGF促使血管生成和内皮细胞增生,白血病细胞与骨髓新生血管之间存在密切的关系。结论:抗VEGF和抗新生血管治疗有可能成为治疗急性白血病的新的思路和方法。  相似文献   

18.
The first distinct mark of rodent implantation is the increased vascular permeability and significant angiogenesis at the sites of blastocyst implantation, but its mechanism is not clearly defined. Vascular endothelial growth factor (VEGF) is the key mediator for angiogenesis during embryogenesis and adult span and also serves as a vascular permeability factor. The aim of this study is to explore VEGF regulation mechanism and the possible role that VEGF plays in implantation by studying the VEGF expression and angiogenesis in the rat uterus during estrous cycle, ovarioectomized and peri-implantation stages usingin situ message RNA hybridization and confocal laser scanning techniques. The results indicated that VEGF was regulated by ovarian steroid hormones. VEGF expression before implantation was localized at luminal epithelium, shifted to stroma as implantation initiated and extensively located at the decidualizing stroma region after implantation. Bandeiraea simplicifolia-1 (BS-1) agglutinin and antibody against von Willebrand factor (vWF) were used to mark the endothelial cells and blood vessels. The results showed that the active angiogenesis occurred during the implantation process and this effect was probably mediated by VEGF. The results suggest that under the regulation of ovarian steroid hormones, VEGF plays an essential role in angiogenesis and increasing vascular permeability in endometrium, which are necessary for successful implantation.  相似文献   

19.
D Shweiki  A Itin  D Soffer  E Keshet 《Nature》1992,359(6398):843-845
Inefficient vascular supply and the resultant reduction in tissue oxygen tension often lead to neovascularization in order to satisfy the needs of the tissue. Examples include the compensatory development of collateral blood vessels in ischaemic tissues that are otherwise quiescent for angiogenesis and angiogenesis associated with the healing of hypoxic wounds. But the presumptive hypoxia-induced angiogenic factors that mediate this feedback response have not been identified. Here we show that vascular endothelial growth factor (VEGF; also known as vascular permeability factor) probably functions as a hypoxia-inducible angiogenic factor. VEGF messenger RNA levels are dramatically increased within a few hours of exposing different cell cultures to hypoxia and return to background when normal oxygen supply is resumed. In situ analysis of tumour specimens undergoing neovascularization show that the production of VEGF is specifically induced in a subset of glioblastoma cells distinguished by their immediate proximity to necrotic foci (presumably hypoxic regions) and the clustering of capillaries alongside VEGF-producing cells.  相似文献   

20.
The known endothelial mitogens stimulate growth of vascular endothelial cells without regard to their tissue of origin. Here we report a growth factor that is expressed largely in one type of tissue and acts selectively on one type of endothelium. This molecule, called endocrine-gland-derived vascular endothelial growth factor (EG-VEGF), induced proliferation, migration and fenestration (the formation of membrane discontinuities) in capillary endothelial cells derived from endocrine glands. However, EG-VEGF had little or no effect on a variety of other endothelial and non-endothelial cell types tested. Similar to VEGF, EG-VEGF possesses a HIF-1 binding site, and its expression is induced by hypoxia. Both EG-VEGF and VEGF resulted in extensive angiogenesis and cyst formation when delivered in the ovary. However, unlike VEGF, EG-VEGF failed to promote angiogenesis in the cornea or skeletal muscle. Expression of human EG-VEGF messenger RNA is restricted to the steroidogenic glands, ovary, testis, adrenal and placenta and is often complementary to the expression of VEGF, suggesting that these molecules function in a coordinated manner. EG-VEGF is an example of a class of highly specific mitogens that act to regulate proliferation and differentiation of the vascular endothelium in a tissue-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号