共查询到19条相似文献,搜索用时 93 毫秒
1.
针对天然气压缩机出现故障时其振动信号呈现出的非平稳非线性特性,提出了基于集总经验模式分解和Hilbert边际谱的压缩机故障诊断方法。首先采用EEMD算法对振动信号进行自适应抗混叠分解,得到不同频带的固有模态函数,然后利用Hilbert边际谱频率分辨率高的特点来提取故障信息。将该方法用于实际天然气压缩机的故障诊断,结果表明本文提出的方法能够成功诊断出压缩机的故障,与基于经验模式分解(EMD)的方法相比具有明显的优势。 相似文献
2.
基于Hilbert谱熵的柴油机故障诊断方法研究 总被引:1,自引:0,他引:1
从信号的特征提取出发,采用局域波时频谱分析和信息熵结合的方法--Hilbert谱熵(HSE),进行柴油机振动信号的特征提取和状态识别.首先,对信号进行局域波分解;然后,根据得到的内蕴模式分量计算Hilbert谱;最后,建立基于时频分布的Hilbert谱熵,并以此作为故障识别的特征参数.以柴油机缸套与活塞间磨损的状态识别为例,根据对时域、频域和时频域的信息熵比较分析,证明了Hilbert谱熵对柴油机的状态进行评价的有效性.此方法为柴油机预知维修提供了一个有效的手段. 相似文献
3.
针对强背景噪声下非高斯脉冲噪声和高斯噪声对滚动轴承故障诊断产生严重干扰的问题,提出了一种基于改进变分模态分解(variational mode decomposition, VMD)并与循环相关熵谱(cyclic correntropy spectrum, CCES)相结合的故障诊断方法。首先,针对VMD传统重构指标易受噪声影响的问题,引入相关熵峭度(correlation entropy kurtosis index, CEK)指标对VMD分解后的模态分量进行选择与重构,去除高斯噪声;然后针对重构后信号仍存在的脉冲噪声影响问题,对重构信号进行CCES投影融合去除非高斯脉冲噪声干扰并增强特征;最后对融合结果进行分析与故障诊断。经仿真测试与实验表明,所提出的方法可以在高斯噪声和非高斯脉冲噪声背景下有效提取滚动轴承故障特征频率并实现故障诊断。 相似文献
4.
为了诊断船用二级往复式空压机最常见的活塞环断裂故障,提出一种将HHT (hilbert-huang transfarm)边际谱和马氏距离相融合的方法。通过空压机正常状态和人为模拟一、二级活塞环断环的实验,采集正常和故障状态下的一、二级缸套和缸盖振动信号。利用HHT算法处理采集的数据,获取HHT边际谱,以空压机固有频段能量值为特征值和马氏距离为分类器,识别其故障类型。实验表明:该方法可以准确、有效地诊断出船用二级往复式空压机活塞断环故障。 相似文献
5.
针对齿轮故障振动信号多分量频带重叠引发的故障模式混淆问题,提出一种基于最大重叠离散小波包变换(MODWPT)边际谱特征和粒子群优化-支持向量机(PSO-SVM)的故障诊断方法。为了减少谐波及噪声对故障模式分量分离的干扰,首先利用MODWPT将采集到的实验信号进行5层分解,得到32个分量,通过频带能量占优方法,筛选出前16个分量,用来构造信号的希尔伯特边际谱;然后,将提取的边际谱特征代入PSO参数优化后的SVM,对故障类型进行识别。仿真信号分析结果表明,MODWPT边际谱在抗模式混叠、抗边界效应和频率提取准确性方面都要优于EMD方法。通过对6种不同类型的齿轮故障信号进行分析,MODWPT边际谱归一化特征具有明显的故障类型分层现象,对齿轮故障的识别准确率达到98%,说明该方法具有较强的故障诊断能力。 相似文献
6.
在旋转机械设备的运维保障过程中,采用基于专家经验的传统故障检测方法难以对轴承的健康状态做出实时的状态检测。针对这一问题,本文提出一种基于快速谱峭度与卷积神经网络(FSK-CNN)的故障诊断方法。首先采用快速谱峭度(FSK)法对振动信号进行特征提取,将一维时域信号转化为二维的谱峭度图;之后,采用一种结合卷积注意力模块(CBAM)的卷积神经网络模型完成故障分类。试验结果表明,快速谱峭度法可以有效提取轴承振动信号故障特征,引入卷积注意力模块对传统卷积神经网络模型具有明显的优化作用,FSK-CNN的故障诊断方法对于10种不同的轴承故障类型的诊断准确率可以达到99%。 相似文献
7.
针对经验模态分解(empirical mode decomposition,EMD)中出现的端点效应和模态混叠现象问题,提出了利用最大相关波形延拓改进聚合经验模态分解(ensemble empirical mode decomposition,EEMD)方法.利用最大相关波形法对原始信号的两端进行延拓,实现延拓数据在原信号边界处的平滑过渡,减小端点处包络线的拟合误差.针对EEMD中参数无法自动获取的问题,采用自适应EEMD对新信号进行分解,提高信号的分解精度.通过仿真分析和转子不平衡故障诊断实例研究表明,改进的EEMD方法不仅能够明显减少虚假模态分量、有效抑制模态混叠现象,而且较好地改善了端点效应引起的分解失真问题.同时与基于极值点对称延拓改进方法及基于镜像延拓改进方法相比,所提方法具有较高的分解精度. 相似文献
8.
耶晓东 《陕西理工学院学报(自然科学版)》2012,28(4):9-13
为研究滚动轴承故障问题,将HHT(Hilbert-Huang transform)分析方法应用于轴承信号故障的提取。用HHT对复合信号进行了仿真分析,表明此方法分析信号的有效性。将HHT方法应用于轴承内外圈的故障诊断,结果表明,所求出的轴承故障的信息特征与理论计算吻合,表明了HHT方法能够有效的提取轴承故障的特征信息,提高轴承故障诊断率。这为类似机械零部件的故障诊断提供了参考。 相似文献
9.
基于噪声小波包络谱的主轴承磨损故障诊断 总被引:1,自引:0,他引:1
传统的基于振动信号的内燃机主轴承磨损故障诊断中安装传感器以及提取故障特征频率很繁琐,为此,提出了基于噪声和正交小波监测往复式活塞发动机滑动主轴承磨损故障的一种新方法.利用Symlets小波分析将测得的机体噪声信号变换到时频域,得到含有内燃机主轴承间隙磨损状态的时频信息.主轴承磨损故障会使机体噪声信号的高频成分增加,而且高频滤波成分特征与内燃机的冲击过程相对应,所以,需选择合适的高频带加以提取并进行包络谱分析.通过声级计测取了代表主轴承4类间隙磨损程度的噪声信号,发现2个特征频率处的能量对间隙磨损状态比较敏感,均随着磨损量的增加而增加.通过该方法,可利用机体噪声信号监测主轴承的磨损状态. 相似文献
10.
针对复杂工况下的采煤机摇臂轴承故障诊断,以经典AlexNet为基础,为适应一维时域信号,采用滑窗法,以滑窗长度150 ms,移动步长120 ms构建样本,建立一种由池化层和多级交替卷积层组成的轴承故障诊断模型1CNN,可完成原始输入信号特征的自适应提取,并通过全连接层分类识别轴承故障.为验证1CNN模型故障诊断率,利用... 相似文献
11.
齿轮作为一种重要的机械传动设备,对其进行故障诊断具有重要意义。传统的齿轮故障诊断大都采用FFT或者小波分析方法,对处理具有非平稳性的齿轮故障信号效果不太明显。HHT由经验模态分解方法(EMD)和Hilbert变换两步组成。经验模态分解方法(EMD)把时间序列信号分解成不同特征时间尺度的固有模态函数(IMF),适合处理非线性和非平稳过程。Hilbert变换对具有调制现象的信号的分析有很大优势。介绍了该方法的基本原理,并将HHT应用于齿轮断齿故障诊断,齿轮故障实验信号的研究结果表明:基于HHT的分析方法,能有效地诊断齿轮的故障。 相似文献
12.
为了提高滚动轴承的故障诊断率,提出了一种基于高阶谱(high order spectrum, HOS)和Tamura纹理特征相结合的故障诊断方法。首先,通过高阶谱方法将滚动轴承故障振动信号的冲击提取出来;然后,对高阶谱进行处理得到二维等高线图;最后依据轴承故障相同时等高线图具有相似性以及不同时具有差异性这一特性,采用基于人类视觉感知的Tamura纹理描述方法提取特征参数后输入多分类支持向量机(support vector machines, SVM)中进行分类。结果表明:高阶谱结合Tamura纹理特征的滚动轴承故障诊断方法在较少特征参数下故障识别准确率能达到较高的精度,对于故障尺寸不同的混合振动信号识别准确率稳定,诊断效果良好。 相似文献
13.
基于阶次跟踪和经验模式分解的齿轮故障诊断 总被引:1,自引:0,他引:1
提出了一种研究旋转机械瞬态信号的分析方法.对齿轮箱加速时测得的原始振动信号进行角域重采样,并对角域里的信号进行经验模式分解(EMD)得到多个固有模式函数(IMF),最后对包含齿轮故障信息的IMF分量进行阶次谱分析.结果表明,阶次跟踪技术能够有效地避免传统频谱方法所无法解决的频率模糊现象,EMD方法能够提取包含故障信息的IMF分量,将两种方法相结合是对传统的频谱分析法的有力补充,具有很广阔的应用前景. 相似文献
14.
无量纲指标作为新的理论工具应用于故障诊断研究中,虽然取得了一定的进展,但在应用时没有考虑到其他噪声干扰信号的影响,对结果分析有一定的干扰.而经验模态分解(EMD)技术能够提取出振动数据的故障特征信号,针对无量纲指标分析数据时的噪声干扰,提出了基于EMD的无量纲指标处理算法.首先对采集到的振动数据做EMD,分解出的前几个固有模态函数(IMF)分量中包含了振动数据的故障特征,去除其他噪声干扰信号的影响;其次求出含有振动数据特征信号的IMF分量的无量纲指标值,做出其无量纲指标的特征范围值;最后进行故障诊断分析.将此算法应用于旋转机械的故障诊断实验中,通过实验验证了该方法的可行性和有效性. 相似文献
15.
针对轴承振动信号中早期故障特征难以识别的问题,提出了利用非相关字典学习稀疏提取微弱冲击特征,进而完成故障诊断的方法。字典的构造是影响稀疏表示算法性能的关键步骤,而传统字典学习方法构造的冗余字典,原子之间具有很强的相关性,不足以表现信号不同的结构特性,也不利于信号准确稀疏重构,进而影响了冲击故障特征信号的提取。因此,在K均值奇异值分解算法(K-SVD)的基础上加入了原子解相关的步骤,形成了非相关字典学习算法(INK-SVD)。采用INK-SVD算法在含噪振动信号段样本中,学习构造低相关性自适应字典;在此基础上,利用稀疏表示方法准确提取冲击故障特征,从而实现更准确的轴承故障诊断。通过仿真分析及实验数据分析,与传统字典学习方法相比,该方法稀疏系数恢复精确度更高,重构信号的包络解调谱更有利于故障特征的辨识,从而验证了该方法的有效性。 相似文献
16.
为解决传统流形学习方法在轴承数据的非欧氏空间中特征提取时的不佳表现,提出引入黎曼流形学习方法.在黎曼流形的框架下,利用原始数据集构造出黎曼流形,并基于此流形提出了黎曼图嵌入特征提取方法,通过对局部结构编码实现初步降维.然后,在低维黎曼流形的基础上融合主成分分析算法(PCA:Principal Components Analysis)和线性判别分析算法(LDA:Linear Discriminant Analysis)设计分类器并对轴承数据进行了聚类.最后,通过在两个轴承数据集上的实验,分析了该方法提取特征的能力.实验结果表明,与现有的故障诊断方法相比,该方法具有较强的故障诊断能力. 相似文献
17.
针对滚动轴承传统故障诊断方法训练收敛速度慢、识别准确率不高、抗噪性能差等问题,提出CWT-CNN的轴承故障诊断模型。通过对滚动轴承振动数据经连续小波变换生成的时频图进行三次垂直方向随机裁剪的方法扩充数据集,之后将其导入到搭建的加入了批量归一化和随机失活的卷积神经网络中进行模型训练,再由训练好的模型实现轴承故障分类。为了测试模型性能,使用凯斯西储大学轴承数据集进行检测,经过实验结果表明:基于提出的方法构建的数据集相比于常规方法,在搭建的卷积神经网络训练中收敛速度更快,训练出的模型性能也更加稳定,最终最高测试准确率为99.75%,常规方法构建的数据集准确率为99.67%,证明了构建数据集方法的可行性;在原始数据中加入信噪比为6dB高斯白噪声后,通过常规方法构建的数据集测试的最高准确率仍达到了98.67%,展现了基于CWT-CNN的轴承故障诊断模型较强的抗噪能力,证明了所提方法的有效性和可行性。 相似文献
18.
介绍了Norden.E.Huang等人提出的Hilbert-Huang变换(HHT)信号分析方法的主要内容、经验模态分解的过程和希尔伯特谱、边际谱的概念等;以虚拟仪器的开发特点及应用为基础,利用软件和硬件相结合的方法,从硬件部分、软件部分、仪器面板3个方面介绍了虚拟式Hilbert-Huang变换信号分析仪的设计,并成功开发了虚拟式Hilbert-Huang变换信号分析仪,为工程信号测试与分析提供了一种全新的方法. 相似文献
19.
总体平均经验模式分解与1.5维谱方法的研究 总被引:11,自引:0,他引:11
针对复杂背景下机车走行部齿轮箱齿轮裂纹故障微弱特征的提取问题,提出了总体平均经验模式分解(EEMD)与1.5维谱的故障特征提取方法.首先运用EEMD方法对振动信号进行自适应抗混分解,得到不同频带的基本模式分量(IMF),然后运用1.5维谱方法对停含有故障特征信息的IMF进行后处理.该方法具有避免模式混淆、抑制高斯白噪声、检测非线性耦合特征等特性,并以此来提取故障的微弱特征信息.根据待处理信号的时频特性与EEMD原理,提出了在EEMD方法中加入高斯白噪声的准则,通过信号仿真验证了EEMD方法的抗混分解能力.将EEMD与1.5维谱方法应用于机车走行部齿轮箱的监测诊断中,成功地提取出齿轮箱大齿轮齿根早期的裂纹故障. 相似文献