共查询到19条相似文献,搜索用时 62 毫秒
1.
为提取应用于脑-机接口系统的稳态视觉诱发电位信号(SSVEP),运用叠加平均与快速傅里叶变换(FFT)相结合的方法,由其频谱图上得到作为输入信号的稳态视觉诱发电位信号.通过实验确定了叠加平均次数与最佳视觉刺激颜色,并对混合闪光刺激下SSVEP的提取进行了研究.实验结果表明,该方法提取出的SSVEP信号能够反映使用者的控制意图,可应用于脑-机接口系统. 相似文献
2.
《西安交通大学学报》2015,(6)
在概述国内外稳态视觉诱发电位脑机接口技术研究的基础上,针对传统稳态视觉诱发电位(SSVEP)在脑-机接口(BCI)系统应用中存在的问题,在范式设计方面,分别提出了基于牛顿环、高频组合编码和幅值调制的SSVEP的3种BCI范式。针对脑电信号微弱、辨识困难的问题,提出了基于随机共振机制的稳态运动视觉诱发电位增强方法;针对高频组合编码稳态视觉诱发电位(CCH-SSVEP)新范式响应信号的非平稳、弱信号特征,提出基于改进的希尔伯特黄变换的CCHSSVEP响应信号处理方法,提高了识别率。在系统应用方面,将牛顿环运动刺激范式与运动场景相结合,设计了场景结合导航技术,相对于传统方法,将刺激目标关联具体的物理位置,导航效率显著提升,将运动场景与刺激目标结合的所见即所得的方式提升了用户预选目标效率以及路线规划能力,同时也有利于用户集中注意力,提高脑电信噪比。最终,将该技术成功地应用于残疾轮椅的脑电导航控制中,取得了令人满意的效果。 相似文献
3.
《西安交通大学学报》2019,(11)
针对稳态视觉诱发电位(SSVEP)脑电信号存在个体差异性强、信噪比低等特点而导致其识别困难等问题,提出一种用于SSVEP信号分类识别的深度学习方法。该方法以原始多通道SSVEP信号为输入,利用SSVEP信号的时空特性,首先使用一维时间卷积核对输入信号的时域进行卷积操作;然后使用一维空间卷积核进行空域卷积,对多通道信息进行融合;最后采用降采样、多尺度卷积、全连接等操作完成SSVEP信号的分类识别。实验结果表明:利用该方法在较短时间的视觉刺激下即可实现对被试者SSVEP信号的有效识别;在1 s刺激时长时,该方法的平均离线信息传输率为94.17 b/min,平均识别准确率为93.3%,相比于无监督典型相关分析方法和有监督支持向量机分析方法,识别准确率分别提升了48.73%、41.21%。该方法具有较高的目标识别效率及鲁棒性,有效提高了基于稳态视觉诱发电位信号的脑-机接口的性能。 相似文献
4.
基于多特征的并行联合脑-机接口与单一特征脑-机接口相比,能利用更多信息和并行方式提高特征提取和系统执行效率。提出了一种基于稳态视觉诱发电位(SSVEP)和运动起始视觉诱发电位(MVEP)的双特征并行联合脑-机接口范式,通过设计3×3字符拼写范式,矩阵中纵列白色竖条按设定频率闪烁诱发SSVEP,横行中白色竖条随机运动诱发MVEP。实验表明,被试者关注目标字符时,两种特征脑电信号被同时诱发出来,并且对两种脑电信号进行特征识别能够检测出被试者选取的目标字符。联合范式并行的刺激编码方式有效节约了刺激诱发时间,为构建更为实用的联合脑-机接口提供了一种实现方法。 相似文献
5.
王洪涛 《重庆文理学院学报(自然科学版)》2010,29(1):69-74
脑机接口(brain—computerinterface,BCI)是近10年发展起来的一种新颖的人机接口方式.它是不依赖于脑的正常输出通路(外周神经系统及肌肉组织)的脑机(计算机或其它装置)通讯系统.脑机接口的一个重要用途不仅为那些思维正常但有严重运动障碍的患者提供语言交流和环境控制途径,还在工业、航空、军事等领域也有潜在的应用价值.本文介绍了基于视觉诱发电位脑机接口的工作原理,从系统设计、数据获取及处理方法等方面论述了脑机接口设计中的关键技术,最后指出了视觉诱发电位脑机接口存在的主要问题和发展趋势. 相似文献
6.
王洪涛 《渝西学院学报(自然科学版)》2010,(1):69-74
脑机接口(brain—computerinterface,BCI)是近10年发展起来的一种新颖的人机接口方式.它是不依赖于脑的正常输出通路(外周神经系统及肌肉组织)的脑机(计算机或其它装置)通讯系统.脑机接口的一个重要用途不仅为那些思维正常但有严重运动障碍的患者提供语言交流和环境控制途径,还在工业、航空、军事等领域也有潜在的应用价值.本文介绍了基于视觉诱发电位脑机接口的工作原理,从系统设计、数据获取及处理方法等方面论述了脑机接口设计中的关键技术,最后指出了视觉诱发电位脑机接口存在的主要问题和发展趋势. 相似文献
7.
针对稳态视觉诱发电位(SSVEP)脑机接口(BCI)系统对计算机性能要求较高的问题,提出一种以现场可编程门阵列(FPGA)和商用脑电采集设备为核心的SSVEP-BCI系统。该系统通过FPGA独立的显示模块,实现了视频图形矩阵(VGA)接口的控制;按照显示刷新帧的方式分配闪烁频率对应的范式图案,实现了诱发SSVEP信号所需范式的稳定显示。通过实验对所设计的VGA视觉刺激器光闪烁频率进行采集分析可知,视觉刺激器范式显示频率与所设计的频率基本一致,可用于SSVEP诱发实验。结合所设计的视觉刺激器,完成了基于FPGA的脑电信号处理和特征识别。设计方案使用串口将脑电信号传输到FPGA端,采用快速傅里叶变换分析频率成分,对视觉刺激器对应的频率进行分析比较,最终通过实验对系统进行验证。结果表明:设计的系统在4个刺激目标和单次实验时长2s的情况下,实现了平均85.25%的识别正确率,表明系统能够实现SSVEP信号的诱发和有效识别,并且能够达到较好的效果。 相似文献
8.
脑机-接口是一种新型的人机交互方式,不依赖于外周神经和肌肉,而是直接将脑电信号翻译成计算机的控制命令。针对传统脑机-接口系统识别准确率低、可识别目标少等问题,提出了一种基于Golay序列调制的视觉诱发电位脑机接口系统。首先受试者必须注视着屏幕上闪烁的目标,通过脑电放大器对人脑表皮层产生的信号进行采集、放大、A/D转换等预处理操作,然后经过实时分析软件对预处理后的脑电信号进行分类识别,取出大脑特定获得下的特征;最后将其转换为计算机的控制命令,并将输出结果反馈给用户。系统选取了Golay序列对刺激目标进行调制,且运用模板匹配法对目标进行识别。实验结果表明,该方法能有效的识别刺激目标,且获得了93.75%的识别准确率。 相似文献
9.
《西安交通大学学报》2017,(2)
针对稳态视觉诱发电位(steady state visual evoked potential,SSVEP)范式下脑电信号(electroencephalograph,EEG)信噪比低、限制其识别正确率提高及脑-机接口应用等问题,根据EEG随机性、近似平稳的特点,提出了用于SSVEP特征频率提取的同步压缩短时傅里叶变换方法。该方法利用短时傅里叶变换对EEG进行时频分析,并通过同步压缩变换对时频平面的能量在频率方向进行重新分配,获得频率曲线更加集中的时频表达;同时为提高EEG信噪比,提取SSVEP脑电中特征频率附近信号进行重构,并利用典型相关分析进行分类识别,有效提高了最终识别正确率。仿真和实验结果表明,该方法极大地提高了信号的信噪比,具有良好的抗噪声性能和信号提取精度,且与传统的经验模态分解和常规滤波方法相比,该方法平均识别正确率最多分别提高了9.98%和4.38%,平均信息传输率最多分别提高了7.57bit/min和2.69bit/min,有效提高了SSVEP范式下脑-机接口的工作性能。 相似文献
10.
11.
DFT与FFT在实际应用时的性能比较 总被引:2,自引:0,他引:2
分析了离散傅立叶变换 (DFT)和它的快速算法 (FFT)的计算 ,对DFT和FFT在应用时的特点作了深入的比较 ,提出在某些实际应用场合DFT比它的快速算法FFT更有优势 相似文献
12.
傅里叶描述子及DIP应用 总被引:1,自引:0,他引:1
计算机视觉常以物体特征为基础进行区别、分类,本文以傅里叶描述子描述物体的形状特征,同时借助快速傅里叶变换完成傅里叶描述子的程序实现,并作为数字图像处理DIP的基本技术应用在区域分类、物体轮廓识别等方面。 相似文献
13.
脑机接口中基于小波包最优基的特征抽取 总被引:13,自引:0,他引:13
在脑机接口研究中,针对脑电特征抽取,提出一种基于小波包最优基分解的方法.依据距离准则,从小波包库中选择一个对分类最优的小波包基;在该小波包基包含的所有分解系数中,抽取部分具有最大可分性的系数作为有效特征;不同通道脑电信号有效特征的结合,构成分类的特征矢量.通过对该特征矢量可分性和识别精度两个性能指标的评估,并与现有分类结果进行比较,表明了所提出方法的有效性. 相似文献
14.
提出了一种基于SDF(Single-path Delay Feedback)结构的低功耗FFT处理器。该FFT处理器使用了根据输入数据的统计分布特征的功耗优化方案。详细分析了该方法的优缺点,并提出了相应的改进方案。使用中芯国际0·18μm工艺设计实现了一个64点的FFT处理器,通过比较发现对于特定的数据流,大约可以节省15%的功耗。 相似文献
15.
16.
吴婷 《高技术通讯(英文版)》2009,15(4):384-387
Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network’s smoothing parameters and hidden central vector for determining hidden neurons. Utilizing the standard dataset I(a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition is got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7%) of the competition. This technology provides an effective way to EEG classification in practical system of BCI. 相似文献
17.
为了实现脑-计算机接口(BCI)系统,对运动想象脑电信号的特征进行了提取和分类.将大脑C3,C4处采集的二路运动想象脑电信号分成4段,分别建立六阶AR参数模型进行功率谱估计,再对每段数据的功率谱求和构造特征矢量,提供给误差反向传播算法进行左右手运动想象脑电模式分类.结果表明,该方法提取的特征向量较好地反应了运动想象脑电信号的事件相关去同步(ERD)和事件相关同步(ERS)的变化时程.另外,该方法识别率高,复杂性低,适合在线脑-计算机接口的应用. 相似文献
18.
基于共空间模式和神经元网络的脑-机接口信号的识别 总被引:1,自引:0,他引:1
提出了一种基于共空间模式和LVQ神经元网络对不同意识的脑电信号进行分类的方法.脑电信号是通过电极在头皮表面采集的脑-机接口的控制信号,提取脑电信号特征并对其进行分类,组成不依赖于正常的由外围神经和肌肉组成的输出通路的通讯系统.首先利用小波包分解对原始脑电信号进行预处理,对分解后特定小波包子带的脑电信号进行共空间模式分解,提取最优的特征;然后利用LVQ网络对不同意识任务特征进行分类,实验结果表明,该方法取得了92.7%的平均分类识别率,已经达到脑-机接口实际应用的标准. 相似文献
19.
基于共空间模式和K近邻分类器的脑-机接口信号分类方法 总被引:1,自引:1,他引:1
脑-机接口是指在人脑和计算机之间建立的直接的交流和控制通道,它以脑电信号的形式反映人的意识,并转换成控制信号.针对两类运动想象脑电信号的分类问题,提出共空间模式和小波包分解相结合的脑电信号特征提取方法.利用不同小波包对训练集的多路脑电信号进行分解,再用共空间模式算法对不同分解层子带的脑电信号进行特征提取,并采用K近邻分类器对提取到的不同特征进行分类,得到最优小波包函数和小波包子带参数.将结果应用于测试集数据的分类.仿真实验结果表明,选择db4小波包函数和4层小波包分解层,对8个特征点进行分类,可以得到高达96%的正确率. 相似文献