首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
纳米石墨基导电复合涂料的电磁屏蔽性能   总被引:2,自引:0,他引:2  
以纳米石墨微片作为导电填料,高分子树脂作为粘结剂,制备高导电性复合涂料,研究其电磁屏蔽等相关性能.探讨纳米石墨微片、基体树脂、表面改性剂、溶剂,以及分散工艺和施工工艺对导电涂料的导电性及电磁屏蔽效能的影响.结果表明,质量分数为30%的纳米石墨微片,质量分数为5%的阳离子分散剂,质量分数为65%的丙烯酸树脂,以及适量混合溶剂为较佳配方,而以机械研磨辅以超声分散是较好分散工艺.通过该法制备得到的导电涂料,其涂膜的表面电阻率低至0.6Ω.m-1,电磁屏蔽效能达到38 dB(1.5 GHz).  相似文献   

2.
纳米ATO复合导电涂料的研制   总被引:3,自引:0,他引:3  
制备了一种以纳米ATO导电粉为填料,醇酸树脂为基体的复合型导电涂料,讨论了ATO的含量、偶联剂种类、固化工艺以及溶剂对涂层导电性能的影响.结果表明,加入60%~65%纳米ATO导电粉,选择钛酸酯偶联剂NTC-401,以5%的用量预处理粉体填料,涂层在50℃的温度下2d后完全固化,涂料的导电性能较好,表面电阻率为103Ω·cm-2.  相似文献   

3.
铜系水性丙烯酸电磁屏蔽涂料的制备   总被引:1,自引:0,他引:1  
研制了一种以丙烯酸树脂乳液为基料、自制铜粉为导电填料的水性电磁屏蔽涂料,结果表明:当铜粉加入量为65%、漆膜厚度为125μm时,该涂料的表面电阻率为0.04?/cm2,在200 kHz~300 GHz频段范围内的电磁屏蔽效能最低为71 db.  相似文献   

4.
用聚丙烯腈纤维经化学镀铜再电镀镍制成的导电PAN/Cu/Ni纤维作填料,与HIPS树脂熔融共混,制备了导电复合材料.对纤维表面镀层的形态结构、导电性及复合材料的导电性和电磁屏蔽性(包括导电填料量、混炼时间及纤维表面处理等)进行了深入地研究.同时对复合材料电磁屏蔽的理论值与实验值做了比较.  相似文献   

5.
铜填充导电涂料的研究   总被引:1,自引:0,他引:1  
本文研究了以醇酸树脂为基料、铜粉为填料的导电涂料中填料浓度与漆膜电阻率的关系.实验表明,油酸、有机钛酸脂添加剂有提高铜系涂料导电稳定性的作用,可望制得导电性能和导电稳定性满足电磁屏蔽要求的漆膜.  相似文献   

6.
电磁屏蔽涂料研究进展   总被引:1,自引:0,他引:1  
对电磁屏蔽原理及掺和型导电高分子材料的导电机制有关理论作了综述,概述了掺和型电磁屏蔽涂料的常用导电填料、复合工艺及性能影响因素,尤其介绍了复合工艺的最新进展--原位插层复(聚)合法.  相似文献   

7.
在分析改性碳纤维和镍粉的复介电常数和复磁导率的基础上,进行复合电磁屏蔽涂层结构的设计,以实现频率小于1.5GHz的电磁波屏蔽效能的提高.制备了改性碳纤维/丙烯酸酯类树脂和镍粉/丙烯酸酯类树脂的电磁屏蔽涂料.实验表明:对填料基本电磁参数的分析能优化多层屏蔽涂层的设计,依据电磁参数来调整各层屏蔽涂料所用填料,可实现逐层阻抗匹配和提高屏蔽效能.在频率小于1.5GHz的低频区域,多层屏蔽涂层的最大电磁屏蔽效能可达30.5dB,相对单层屏蔽涂层,提高了5.31dB.    相似文献   

8.
本文研究四个不同类型钛酸酯偶联剂涂复的CaCO_3充填PVC共混物的流变性能。对偶联剂类型、用量、涂复工艺以及CaCO_3类型、用量与熔体流动性的关系进行实验测定。结果指出,NDZ—102偶联剂偶联效果较佳;对轻质CaCO_3,偶联剂涂复用量不大于2.5%;对超细CaCO_3,偶联剂用量应按比表面积增大倍数计算。同时对涂复过程的温度进行选定。采用本文所得结果,能改善填料与树脂界面状态,收到改善熔体流动性的效果。  相似文献   

9.
金属填充LDPE薄膜电磁屏蔽性能研究   总被引:1,自引:0,他引:1  
通过向聚合物低密度聚乙烯(LDPE)中填加导电填料不锈钢纤维和镍粉,制备成了LDPE-Ni/不锈钢纤维电磁屏蔽复合薄膜. 实验研究了金属填充聚合物LDPE作为电磁屏蔽复合膜的性能,分析了金属填料的加入对复合膜电磁性能、导电性能和力学性能的影响机理. 结果表明,该薄膜对800MHz以下的低频段电磁波有良好的屏蔽效能,屏蔽值为25~30dB;"渗滤阈值"为15%~20%;材料具有较强的吸波功能;当不锈钢纤维和镍粉的质量分数为16%时,复合材料达到最大拉伸强度15MPa.  相似文献   

10.
复合型炭系导电发热涂料的研究   总被引:6,自引:0,他引:6  
采用复合型炭系填料石墨、炭黑、煅烧石油焦、石墨纤维、炭纤维和碳化硅粉末等与合成改性树脂经机械混合及不等温固化,制得并联导电发热涂料;利用扫描电镜、伏安法体积电阻率测试仪和电参数测定仪对涂层进行测试分析.研究结果表明:在安全电压下,该涂料具有加热迅速、使用安全、热效率高等特点,而且热传导和热辐射性能优良;在填料含量相同时,复合型炭系填料优化配方后所制得的涂层比单一填料具有更优良的导电特性;炭系填料与纤维匹配后构成了三维空间网络导电粒子链结构,更利于导电和发热;在60 V电压下,通电14 min,自制电热壁画涂层表面温度达到134.8 ℃;树脂基体改性后电发热涂料的附着力提高,耐温变性和耐热性等能力增强.  相似文献   

11.
以硝酸铝和磷酸氢二铵为原料,尿素为均相沉淀剂,壬基酚聚氧乙烯(10)醚(OP-10)为分散剂,采用均相沉淀法制备了颗粒大小在0.12μm左右且粒径分布较窄的超细球形磷酸铝粉体.首先考察了OP-10对磷酸铝颗粒大小的影响,结果表明OP-10对磷酸铝颗粒大小有十分显著的调控作用.然后在OP-10浓度为1%的条件下,用正交试验进一步考察了反应物初始浓度、尿素与硝酸铝的物质的量之比、反应温度和反应时间等四个因素对磷酸铝粒度的影响.结果表明,在OP-10存在下,反应物Al(NO3)3初始浓度对磷酸铝颗粒大小也有较大的影响,随着Al(NO3)3初始浓度的增加,磷酸铝的粒径增大.在所考察的条件范围内,其他三个因素对磷酸铝颗粒大小影响不大.  相似文献   

12.
在脲醛树脂胶中加入超细铜粉(Cu)、超细镍粉(Ni)以及石墨粉(CP)导电单元,制备3层结构的落叶松复合胶合板。分析了导电单元不同施加量以及涂胶量对木基复合材料电磁屏蔽效能和胶合强度的影响。结果表明,复合材料的胶合强度达到或超过国家标准。在施加超细铜粉条件下,由于铜粉氧化,胶合板的电磁屏蔽效能为0.00 dB。在施加超细镍粉条件下,电磁屏蔽效能为0.00~10.10 dB;在施加石墨粉条件下,电磁屏蔽效能为528~13.13 dB。导电单元的加入有利于导电网链的形成,但对胶合强度有不利影响,进而不利于胶合板的导电性,因此电磁屏蔽效能是这两个方面综合作用的结果。  相似文献   

13.
镀Sn-Ni硅酸钙镁晶须对镍粉/环氧树脂屏蔽涂料性能的影响   总被引:2,自引:0,他引:2  
以镀Sn-Ni硅酸钙镁晶须和镍粉作为屏蔽功能填料,以环氧树脂作为黏结剂,按照涂料制备的方法,制备了一种新型镀Sn-Ni硅酸钙镁晶须/镍粉/环氧树脂电磁波屏蔽复合涂料,并研究了镀Sn-Ni硅酸钙镁晶须对镍粉/环氧树脂屏蔽复合涂料导电性和屏蔽性能的影响。结果表明,镀Sn-Ni硅酸钙镁晶须的最佳含量为占屏蔽复合填料的5%。当涂层厚度为0.3mm时,涂层的电阻率为1.32Ω.cm,在300 kHz~1.5 GHz频段内,涂层的屏蔽效能为37.197~46.139 dB。与不含晶须的涂层相比,电阻率降低了1.08Ω.cm,屏蔽效能提高了5.385~9.854 dB。该研究为矿产资源的综合利用和电磁环境污染的综合治理提供了一种新的思路和方法。  相似文献   

14.
分别采用聚丙烯酸铵和海因环氧树脂为分散剂和凝胶剂,制备锆钛酸铅(PZT)压电陶瓷浆料,研究了分散剂含量、球磨时间、固相含量以及树脂含量等因素对浆料流变性能的影响,结果表明,当分散剂加入量为0.6%、球磨时间为24 h及固相体积含量为55.0%时,浆料流变特性最佳.浆料粘度随着树脂含量增加而增大,但即使树脂含量高达25.0%,浆料流动性依然能较好满足浇注成型的需求.  相似文献   

15.
掺合型石墨/炭黑导电涂料的研究   总被引:4,自引:0,他引:4  
对掺合型石墨/炭黑电发热导电涂料的制备工艺,配方设计,导电性能和影响因素等进行了研究,经测试,所得产品的导电性,附着性和耐水性等一系列指标均符合电热器使用要求,可以替代金属电热丝用于电加热器件中。  相似文献   

16.
导电腈纶纱在防电磁波辐射织物开发中的应用研究   总被引:1,自引:0,他引:1  
随着电子产品的日益普及,环境中电磁波辐射的强度增加,对人体健康产生一定的危害。开发防电磁波辐射织物备受人们的关注;开发具有防护功能的导电腈纶纱作为防电磁辐射织物具有一定效果,通过测试其各项性能,说明这种织物不仅舒适、柔软,而且能达到防护要求.  相似文献   

17.
以聚丙烯(PP)树脂为研究对象,制备抗静电防老化的多功能黑色母粒,其关键技术在于解决各种功能助剂、着色剂、分散剂及载体树脂的品种、数量、配比组合及相容性、协同性问题.实验首先选择载体树脂和各种助剂,然后通过正交实验确定多功能黑色母粒的最佳配比.结果表明:载体树脂为40 kg,色素为30 kg,抗静电剂为2 kg,抗氧剂为5 kg,分散剂为20 kg,增容剂为3 kg是制备100 kg多功能黑色母粒的最佳配比.用该功能母粒制备的聚丙烯板材的表面电阻系数为3.8×10^9,氙灯老化72 h后色牢度为4级.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号