共查询到15条相似文献,搜索用时 78 毫秒
1.
定义了加权Bergman空间以及加权Bergman空间上的加权复合算子,前者是经典Bergman空间的推广.利用(紧)Carleson测度、广义计数函数刻画了加权Bergman空间上加权复合算子的有界性、紧性. 相似文献
2.
加权Dirichlet型空间上的紧复合算子 总被引:1,自引:0,他引:1
陈泳 《浙江师范大学学报(自然科学版)》2002,25(3):224-227
利用复合算子有界及紧性的比较性结果证明,当1≤p<2α≤2,或1≤p<1+α且α>1时,Cφ在Dpα上紧当且仅当φ在( D)上无角导数. 相似文献
3.
4.
定义了加权复合算子(uCφ)(f)(z)=u(z)f(φ(z)),z∈D,f∈H(D);研究了由一个单位圆盘上的解析自映射诱导的、从加权Bergman空间到加权Bloch空间的加权复合算子的有界性和紧性. 相似文献
5.
6.
于燕燕 《徐州师范大学学报(自然科学版)》2007,25(1):22-25
设A2,α(D)表示L2,α(D)中解析函数的全体构成的闭子空间,研究A2,α(D)上复合算子的积,得到了CψC*φ紧的一个必要条件和C*φCψ紧的一个充分条件. 相似文献
7.
设BN是CN上的单位球,φ是BN上的全纯自映射,g,f∈H(BN).Volterra复合算子定义为Tg,φf(z)=f10f((4)(tz)) (A)g(tz)dt/t,z∈BN.利用符号函数φ和映射g的函数论性质,研究了在单位球上从加权Bergmar空间到加权Bloch空间的Volterra复合算子的有界性和紧性. 相似文献
8.
Bergman空间上的复合算子与加权复合算子 总被引:1,自引:1,他引:0
作者研究了多复平面Cn中有界对称域上解析函数Bergman空间上的复合算子与加权复合算子.利用有界对称域的Bergman度量分解,作者给出了复合算子具有闭值域的一个充分条件.特别地,当有界对称域为单位球时,作者利用Bergman空间上范数与Sobolev空间上范数的等价性得到了复合算子具有闭值域的一个充分条件.最后,作者刻画了自伴加权复合算子以及Fredholm复合算子的特征. 相似文献
9.
10.
设Dn是Cn中的单位多圆柱,φ(z)=(φ1(z),φ2(z),…,φn(z))是Dn的一个全纯自映射,ψ(z)是Dn上的全纯函数.研究了单位多圆柱上从加权Bergman空间到Bloch型空间的加权复合算子ψCφ;通过φ和ψ的函数特征,分别给出了单位多圆柱上从加权Bergman空间到Bloch型空间的加权复合算子ψCφ的有界性和紧性的充分必要条件. 相似文献
11.
叶善力 《福建师范大学学报(自然科学版)》2008,24(1):11-14
研究单位圆盘上的小Bloch型空间B0α和Bloch型空间Bβ之间的加权复合算子uCφ,给出了uCφ是Βα空间和Bβ0空间之间的有界算子和紧算子的充分必要条件. 相似文献
12.
利用算子有界性和紧性的定义,给出了加权Bloch空间及加权小Bloch空间上加权复合算子的有界性和紧性的充分必要条件. 相似文献
13.
研究了向量值Hardy-Littlewood算子在加权Herz-Morrey空间及加权弱Herz-Morrey空间上的有界性,应用这些结果,得到了一大类定义在Rn上的次线性算子向量值不等式. 相似文献
14.
讨论了从单位圆盘上的Hardy空间Hp到对数Hardy-Bloch型空间BH p,L={f∈H(D):‖f‖p,L=sup z∈D(1-|z|)M p(|z|,f’)log(e/1-|z|)<∞}的加权复合算子uCφ的有界性与紧性,主要得到以下结论:(i)uCφ是空间H∞到BH p,L(1≤p<∞)的有界算子与紧算子的充要条件;(ii)uCφ是空间Hq(1≤q<∞)到BH p,L(1≤p<∞)的有界算子与紧算子的充要条件. 相似文献
15.
加权Bergman空间之间复合算子列的总体紧性 总被引:1,自引:0,他引:1
文章研究了加权Bergman空间之间复合算子列的总体紧性,利用符号函数诱导的测度得到了加权Bergman空间之间复合算子列总体紧性的充要条件。 相似文献