首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
定义了加权Bergman空间以及加权Bergman空间上的加权复合算子,前者是经典Bergman空间的推广.利用(紧)Carleson测度、广义计数函数刻画了加权Bergman空间上加权复合算子的有界性、紧性.  相似文献   

2.
加权Dirichlet型空间上的紧复合算子   总被引:1,自引:0,他引:1  
利用复合算子有界及紧性的比较性结果证明,当1≤p<2α≤2,或1≤p<1+α且α>1时,Cφ在Dpα上紧当且仅当φ在( D)上无角导数.  相似文献   

3.
给出了单位球上不同Hardy空间之间的加权复合算子有界及紧的充要条件。  相似文献   

4.
定义了加权复合算子(uCφ)(f)(z)=u(z)f(φ(z)),z∈D,f∈H(D);研究了由一个单位圆盘上的解析自映射诱导的、从加权Bergman空间到加权Bloch空间的加权复合算子的有界性和紧性.  相似文献   

5.
Bergman空间上的加权复合算子   总被引:2,自引:2,他引:2  
作者首先利用函数的分析性质给出了Bergman空间上加权复合算子紧性的一种刻画,其次讨论了自伴的加权复合算子.  相似文献   

6.
设A2,α(D)表示L2,α(D)中解析函数的全体构成的闭子空间,研究A2,α(D)上复合算子的积,得到了CψC*φ紧的一个必要条件和C*φCψ紧的一个充分条件.  相似文献   

7.
设BN是CN上的单位球,φ是BN上的全纯自映射,g,f∈H(BN).Volterra复合算子定义为Tg,φf(z)=f10f((4)(tz)) (A)g(tz)dt/t,z∈BN.利用符号函数φ和映射g的函数论性质,研究了在单位球上从加权Bergmar空间到加权Bloch空间的Volterra复合算子的有界性和紧性.  相似文献   

8.
Bergman空间上的复合算子与加权复合算子   总被引:1,自引:1,他引:0  
作者研究了多复平面Cn中有界对称域上解析函数Bergman空间上的复合算子与加权复合算子.利用有界对称域的Bergman度量分解,作者给出了复合算子具有闭值域的一个充分条件.特别地,当有界对称域为单位球时,作者利用Bergman空间上范数与Sobolev空间上范数的等价性得到了复合算子具有闭值域的一个充分条件.最后,作者刻画了自伴加权复合算子以及Fredholm复合算子的特征.  相似文献   

9.
加权解析Lipschitz空间的复合算子   总被引:1,自引:0,他引:1  
主要研究了单位圆上加权解析Lipschitz空间上的复合算子的有界性和紧性.  相似文献   

10.
设Dn是Cn中的单位多圆柱,φ(z)=(φ1(z),φ2(z),…,φn(z))是Dn的一个全纯自映射,ψ(z)是Dn上的全纯函数.研究了单位多圆柱上从加权Bergman空间到Bloch型空间的加权复合算子ψCφ;通过φ和ψ的函数特征,分别给出了单位多圆柱上从加权Bergman空间到Bloch型空间的加权复合算子ψCφ的有界性和紧性的充分必要条件.  相似文献   

11.
研究单位圆盘上的小Bloch型空间B0α和Bloch型空间Bβ之间的加权复合算子uCφ,给出了uCφ是Βα空间和Bβ0空间之间的有界算子和紧算子的充分必要条件.  相似文献   

12.
利用算子有界性和紧性的定义,给出了加权Bloch空间及加权小Bloch空间上加权复合算子的有界性和紧性的充分必要条件.  相似文献   

13.
研究了向量值Hardy-Littlewood算子在加权Herz-Morrey空间及加权弱Herz-Morrey空间上的有界性,应用这些结果,得到了一大类定义在Rn上的次线性算子向量值不等式.  相似文献   

14.
讨论了从单位圆盘上的Hardy空间Hp到对数Hardy-Bloch型空间BH p,L={f∈H(D):‖f‖p,L=sup z∈D(1-|z|)M p(|z|,f’)log(e/1-|z|)<∞}的加权复合算子uCφ的有界性与紧性,主要得到以下结论:(i)uCφ是空间H∞到BH p,L(1≤p<∞)的有界算子与紧算子的充要条件;(ii)uCφ是空间Hq(1≤q<∞)到BH p,L(1≤p<∞)的有界算子与紧算子的充要条件.  相似文献   

15.
加权Bergman空间之间复合算子列的总体紧性   总被引:1,自引:0,他引:1  
文章研究了加权Bergman空间之间复合算子列的总体紧性,利用符号函数诱导的测度得到了加权Bergman空间之间复合算子列总体紧性的充要条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号