首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luo ZX  Ji Q  Yuan CX 《Nature》2007,450(7166):93-97
Tribosphenic molars of basal marsupials and placentals are a major adaptation, with the protocone (pestle) of the upper molar crushing and grinding in the talonid basin (mortar) on the lower molar. The extinct pseudo-tribosphenic mammals have a reversed tribosphenic molar in which a pseudo-talonid is anterior to the trigonid, to receive the pseudo-protocone of the upper molar. The pseudo-protocone is analogous to the protocone, but the anteriorly placed pseudo-talonid is opposite to the posterior talonid basin of true tribosphenic mammals. Here we describe a mammal of the Middle Jurassic period with highly derived pseudo-tribosphenic molars but predominantly primitive mandibular and skeletal features, and place it in a basal position in mammal phylogeny. Its shoulder girdle and limbs show fossorial features similar to those of mammaliaforms and monotremes, but different compared with those of the earliest-known Laurasian tribosphenic (boreosphenid) mammals. The find reveals a much greater range of dental evolution in Mesozoic mammals than in their extant descendants, and strengthens the hypothesis of homoplasy of 'tribosphenic-like' molars among mammals.  相似文献   

2.
The Jurassic period is an important stage in early mammalian evolution, as it saw the first diversification of this group, leading to the stem lineages of monotremes and modern therian mammals. However, the fossil record of Jurassic mammals is extremely poor, particularly in the southern continents. Jurassic mammals from Gondwanaland are so far only known from Tanzania and Madagascar, and from trackway evidence from Argentina. Here we report a Jurassic mammal represented by a dentary, which is the first, to our knowledge, from South America. The tiny fossil from the Middle to Late Jurassic of Patagonia is a representative of the recently termed Australosphenida, a group of mammals from Gondwanaland that evolved tribosphenic molars convergently to the Northern Hemisphere Tribosphenida, and probably gave rise to the monotremes. Together with other mammalian evidence from the Southern Hemisphere, the discovery of this new mammal indicates that the Australosphenida had diversified and were widespread in Gondwanaland well before the end of the Jurassic, and that mammalian faunas from the Southern Hemisphere already showed a marked distinction from their northern counterparts by the Middle to Late Jurassic.  相似文献   

3.
Li G  Luo ZX 《Nature》2006,439(7073):195-200
A new spalacotheriid mammal preserved with a complete postcranium and a partial skull has been discovered from the Yixian Formation of Liaoning, China. Spalacotheroid symmetrodonts are relatives to modern therians (combined group of marsupials and placentals) and are characterized by many skeletal apomorphies of therians. But unlike the closely related spalacotheroids and living therians, this new mammal revealed some surprisingly convergent features to monotremes in the lumbar vertebrae, pelvis and hindlimb. These peculiar features may have developed as functional convergence to locomotory features of monotremes, or the presence of lumbar ribs in this newly discovered mammal and their absence in its close relatives might be due to evolutionary developmental homoplasy. Analysis including this new taxon suggests that spalacotheroids evolved earlier in Eurasia and then dispersed to North America, in concordance with prevailing geodispersal patterns of several common mammalian groups during the Early Cretaceous period.  相似文献   

4.
Extant eutherian mammals and their most recent common ancestor constitute the crown group Placentalia. This taxon, plus all extinct taxa that share a more recent common ancestor with placentals than they do with Metatheria (including marsupials), constitute Eutheria. The oldest well documented eutherian-dominated fauna in the world is Dzharakuduk, Uzbekistan. Among eutherians that it yields is Kulbeckia, an 85-90-Myr-old member of Zalambdalestidae (a family of Late Cretaceous Asian eutherians). This extends Zalambdalestidae back by some 10 million years from sites in the Gobi Desert, Mongolia. A phylogenetic analysis of well described Late Cretaceous eutherians strongly supports Zalambdalestidae, less strongly supports 'Zhelestidae' (a Late Cretaceous clade related to Tertiary ungulates), but does not support Asioryctitheria (a group of Late Cretaceous Asian eutherians). A second analysis incorporating placentals from clades that include rodents (Tribosphenomys), lagomorphs (Mimotona) and archaic ungulates (Protungulatum and Oxyprimus) strongly supports Zalambdalestidae in a clade with Glires (rabbits, rodents and extinct relatives) and less strongly 'Zhelestidae' within a clade that includes archaic ungulates ('condylarths'). This argues that some Late Cretaceous eutherians belong within the crown group Placentalia. The ages of these taxa are in line with molecularly based estimates of 64-104 Myr ago (median 84 Myr ago) for the superordinal diversification of some placentals, but provide no support for a Late Cretaceous diversification of extant placental orders.  相似文献   

5.
Mammal teeth from the Cretaceous of Africa   总被引:1,自引:0,他引:1  
We report here the discovery of two mammal teeth from the early Cretaceous of Cameroon. These, and some jaw fragments, all from Cameroon, are the only fossil evidence of mammalian evolution from Africa between late Jurassic and Paleocene, a span of at least 85 million years. A triangular upper tooth lacks the principal internal cusp of marsupials and placentals and is therefore of a similar evolutionary grade to most Jurassic and early Cretaceous therian mammals, but more primitive than the metatherian-eutherian grade. Early Cretaceous, or older, therian mammals are now known from all southern continents except Antarctica. The new find from Cameroon is consistent with the hypothesis that marsupials, the dominant living mammals of South America and Australia, were not present on any Gondwana continents until after the early Cretaceous separation of Africa by the opening of the South Atlantic.  相似文献   

6.
Makovicky PJ  Apesteguía S  Agnolín FL 《Nature》2005,437(7061):1007-1011
The evolutionary history of Maniraptora, the clade of carnivorous dinosaurs that includes birds and the sickle-clawed Dromaeosauridae, has hitherto been largely restricted to Late Jurassic and Cretaceous deposits on northern continents. The stunning Early Cretaceous diversity of maniraptorans from Liaoning, China, coupled with a longevity implied by derived Late Jurassic forms such as Archaeopteryx, pushes the origins of maniraptoran lineages back to Pangaean times and engenders the possibility that such lineages existed in Gondwana. A few intriguing, but incomplete, maniraptoran specimens have been reported from South America, Africa and Madagascar. Their affinities remain contested, however, and they have been interpreted as biogeographic anomalies relative to other faunal components of these land-masses. Here we describe a near-complete, small dromaeosaurid that is both the most complete and the earliest member of the Maniraptora from South America, and which provides new evidence for a unique Gondwanan lineage of Dromaeosauridae with an origin predating the separation between northern and southern landmasses.  相似文献   

7.
Novas FE  Pol D 《Nature》2005,433(7028):858-861
Most of what is known about the evolution of deinonychosaurs (that is, the group of theropods most closely related to birds) is based on discoveries from North America and Asia. Except for Unenlagia comahuensis and some fragmentary remains from northern Africa, no other evidence was available on deinonychosaurian diversity in Gondwana. Here we report a new, Late Cretaceous member of the clade, Neuquenraptor argentinus gen. et sp. nov., representing uncontroversial evidence of a deinonychosaurian theropod in the Southern Hemisphere. The new discovery demonstrates that Cretaceous theropod faunas from the southern continents shared greater similarity with those of the northern landmasses than previously thought. Available evidence suggests that deinonychosaurians were probably distributed worldwide at least by the beginning of the Cretaceous period. The phylogenetic position of the new deinonychosaur, as well as other Patagonian coelurosaurian theropods, is compatible with a vicariance model of diversification for some groups of Gondwanan and Laurasian dinosaurs.  相似文献   

8.
Luo ZX 《Nature》2007,450(7172):1011-1019
Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.  相似文献   

9.
10.
A Jurassic eutherian mammal and divergence of marsupials and placentals   总被引:2,自引:0,他引:2  
Luo ZX  Yuan CX  Meng QJ  Ji Q 《Nature》2011,476(7361):442-445
Placentals are the most abundant mammals that have diversified into every niche for vertebrates and dominated the world's terrestrial biotas in the Cenozoic. A critical event in mammalian history is the divergence of eutherians, the clade inclusive of all living placentals, from the metatherian-marsupial clade. Here we report the discovery of a new eutherian of 160?Myr from the Jurassic of China, which extends the first appearance of the eutherian-placental clade by about 35?Myr from the previous record, reducing and resolving a discrepancy between the previous fossil record and the molecular estimate for the placental-marsupial divergence. This mammal has scansorial forelimb features, and provides the ancestral condition for dental and other anatomical features of eutherians.  相似文献   

11.
Rougier GW  Apesteguía S  Gaetano LC 《Nature》2011,479(7371):98-102
Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals.  相似文献   

12.
Meng J  Wang Y  Li C 《Nature》2011,472(7342):181-185
The transference of post-dentary jaw elements to the cranium of mammals as auditory ossicles is one of the central topics in evolutionary biology of vertebrates. Homologies of these bones among jawed vertebrates have long been demonstrated by developmental studies; but fossils illuminating this critical transference are sparse and often ambiguous. Here we report the first unambiguous ectotympanic (angular), malleus (articular and prearticular) and incus (quadrate) of an Early Cretaceous eutriconodont mammal from the Jehol Biota, Liaoning, China. The ectotympanic and malleus have lost their direct contact with the dentary bone but still connect the ossified Meckel's cartilage (OMC); we hypothesize that the OMC serves as a stabilizing mechanism bridging the dentary and the detached ossicles during mammalian evolution. This transitional mammalian middle ear narrows the morphological gap between the mandibular middle ear in basal mammaliaforms and the definitive mammalian middle ear (DMME) of extant mammals; it reveals complex changes contributing to the detachment of ear ossicles during mammalian evolution.  相似文献   

13.
Zack SP  Penkrot TA  Bloch JI  Rose KD 《Nature》2005,434(7032):497-501
Macroscelideans (elephant shrews or sengis) are small-bodied (25-540 g), cursorial (running) and saltatorial (jumping), insectivorous and omnivorous placental mammals represented by at least 15 extant African species classified in four genera. Macroscelidea is one of several morphologically diverse but predominantly African placental orders classified in the superorder Afrotheria by molecular phylogeneticists. The distribution of modern afrotheres, in combination with a basal position for Afrotheria within Placentalia and molecular divergence-time estimates, has been used to link placental diversification with the mid-Cretaceous separation of South America and Africa. Morphological phylogenetic analyses do not support Afrotheria and the fossil record favours a northern origin of Placentalia. Here we describe fossil postcrania that provide evidence for a close relationship between North American Palaeocene-Eocene apheliscine 'hyopsodontid' 'condylarths' (early ungulates or hoofed mammals) and extant Macroscelidea. Apheliscine postcranial morphology is consistent with a relationship to other ungulate-like afrotheres (Hyracoidea, Proboscidea) but does not provide support for a monophyletic Afrotheria. As the oldest record of an afrothere clade, identification of macroscelidean relatives in the North American Palaeocene argues against an African origin for Afrotheria, weakening support for linking placental diversification to the break-up of Gondwana.  相似文献   

14.
Cifelli RL 《Nature》1999,401(6751):363-366
The main groups of living mammals, marsupials and eutherians, are presumed to have diverged in the Early Cretaceous, but their early history and biogeography are poorly understood. Dental remains have suggested that the eutherians may have originated in Asia, spreading to North America in the Late Cretaceous, where an endemic radiation of marsupials was already well underway. Here I describe a new tribosphenic mammal (a mammal with lower molar heels that are three-cusped and basined) from the Early Cretaceous of North America, based on an unusually complete specimen. The new taxon bears characteristics (molarized last premolar, reduction to three molars) otherwise known only for Eutheria among the tribosphenic mammals. Morphometric analysis and character comparisons show, however, that its molar structure is primitive (and thus phylogenetically uninformative), emphasizing the need for caution in interpretation of isolated teeth. The new mammal is approximately contemporaneous with the oldest known Eutheria from Asia. If it is a eutherian, as is indicated by the available evidence, then this group was far more widely distributed in the Early Cretaceous than previously appreciated. An early presence of Eutheria in North America offers a potential source for the continent's Late Cretaceous radiations, which have, in part, proven difficult to relate to contemporary taxa in Asia.  相似文献   

15.
Wilson GP  Evans AR  Corfe IJ  Smits PD  Fortelius M  Jernvall J 《Nature》2012,483(7390):457-460
The Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous-Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous-Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous-Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous-Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.  相似文献   

16.
Simmons NB  Seymour KL  Habersetzer J  Gunnell GF 《Nature》2008,451(7180):818-821
Bats (Chiroptera) represent one of the largest and most diverse radiations of mammals, accounting for one-fifth of extant species. Although recent studies unambiguously support bat monophyly and consensus is rapidly emerging about evolutionary relationships among extant lineages, the fossil record of bats extends over 50 million years, and early evolution of the group remains poorly understood. Here we describe a new bat from the Early Eocene Green River Formation of Wyoming, USA, with features that are more primitive than seen in any previously known bat. The evolutionary pathways that led to flapping flight and echolocation in bats have been in dispute, and until now fossils have been of limited use in documenting transitions involved in this marked change in lifestyle. Phylogenetically informed comparisons of the new taxon with other bats and non-flying mammals reveal that critical morphological and functional changes evolved incrementally. Forelimb anatomy indicates that the new bat was capable of powered flight like other Eocene bats, but ear morphology suggests that it lacked their echolocation abilities, supporting a 'flight first' hypothesis for chiropteran evolution. The shape of the wings suggests that an undulating gliding-fluttering flight style may be primitive for bats, and the presence of a long calcar indicates that a broad tail membrane evolved early in Chiroptera, probably functioning as an additional airfoil rather than as a prey-capture device. Limb proportions and retention of claws on all digits indicate that the new bat may have been an agile climber that employed quadrupedal locomotion and under-branch hanging behaviour.  相似文献   

17.
Tavaré S  Marshall CR  Will O  Soligo C  Martin RD 《Nature》2002,416(6882):726-729
Divergence times estimated from molecular data often considerably predate the earliest known fossil representatives of the groups studied. For the order Primates, molecular data calibrated with various external fossil dates uniformly suggest a mid-Cretaceous divergence from other placental mammals, some 90 million years (Myr) ago, whereas the oldest known fossil primates are from the basal Eocene epoch (54-55 Myr ago). The common ancestor of primates should be earlier than the oldest known fossils, but adequate quantification is needed to interpret possible discrepancies between molecular and palaeontological estimates. Here we present a new statistical method, based on an estimate of species preservation derived from a model of the diversification pattern, that suggests a Cretaceous last common ancestor of primates, approximately 81.5 Myr ago, close to the initial divergence time inferred from molecular data. It also suggests that no more than 7% of all primate species that have ever existed are known from fossils. The approach unites all the available palaeontological methods of timing evolutionary events: the fossil record, extant species and clade diversification models.  相似文献   

18.
In mammals,genomic imprinting confers developmental asymmetry and complementation on the parental genomes and makes both parental genomes essential for complete development.Genomic imprinting is,therefore,the first regulatory step of genome-wide gene expression of embryogenesis and thought to be the epigenetic foundation of bisexual reproduction.However,how the genomic imprinting is originated,established and maintained during vertebrate evolution remains unknown.Because no endogenous imprinting gene has be...  相似文献   

19.
Venditti C  Meade A  Pagel M 《Nature》2011,479(7373):393-396
The radiation of the mammals provides a 165-million-year test case for evolutionary theories of how species occupy and then fill ecological niches. It is widely assumed that species often diverge rapidly early in their evolution, and that this is followed by a longer, drawn-out period of slower evolutionary fine-tuning as natural selection fits organisms into an increasingly occupied niche space. But recent studies have hinted that the process may not be so simple. Here we apply statistical methods that automatically detect temporal shifts in the rate of evolution through time to a comprehensive mammalian phylogeny and data set of body sizes of 3,185 extant species. Unexpectedly, the majority of mammal species, including two of the most speciose orders (Rodentia and Chiroptera), have no history of substantial and sustained increases in the rates of evolution. Instead, a subset of the mammals has experienced an explosive increase (between 10- and 52-fold) in the rate of evolution along the single branch leading to the common ancestor of their monophyletic group (for example Chiroptera), followed by a quick return to lower or background levels. The remaining species are a taxonomically diverse assemblage showing a significant, sustained increase or decrease in their rates of evolution. These results necessarily decouple morphological diversification from speciation and suggest that the processes that give rise to the morphological diversity of a class of animals are far more free to vary than previously considered. Niches do not seem to fill up, and diversity seems to arise whenever, wherever and at whatever rate it is advantageous.  相似文献   

20.
Storch D  Keil P  Jetz W 《Nature》2012,488(7409):78-81
Despite the broad conceptual and applied relevance of how the number of species or endemics changes with area (the species-area and endemics-area relationships (SAR and EAR)), our understanding of universality and pervasiveness of these patterns across taxa and regions has remained limited. The SAR has traditionally been approximated by a power law, but recent theories predict a triphasic SAR in logarithmic space, characterized by steeper increases in species richness at both small and large spatial scales. Here we uncover such universally upward accelerating SARs for amphibians, birds and mammals across the world’s major landmasses. Although apparently taxon-specific and continent-specific, all curves collapse into one universal function after the area is rescaled by using the mean range sizes of taxa within continents. In addition, all EARs approximately follow a power law with a slope close to 1, indicating that for most spatial scales there is roughly proportional species extinction with area loss. These patterns can be predicted by a simulation model based on the random placement of contiguous ranges within a domain. The universality of SARs and EARs after rescaling implies that both total and endemic species richness within an area, and also their rate of change with area, can be estimated by using only the knowledge of mean geographic range size in the region and mean species richness at one spatial scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号