首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of sound waves on the stationary membrane conductivity of the axon membrane in myelinated nerve was investigated. Sound fields with frequencies within the auditory limit shift the transition voltage Vtr and correspondingly the threshold voltage of the action potential in polarisation direction. The results indicate that these changes of the electrical membrane behavior are due to a direct mechanical interaction between low frequency sound fields and membrane structure.  相似文献   

2.
The mechanism by which static and low-frequency magnetic fields are transduced into biological signals responsible for reported effects on brain electrical activity is not yet ascertained. To test the hypothesis that fields can cause a subthreshold change in the resting membrane potential of excitable cells, we measured changes in transmembrane current under voltage clamp produced in SH-SY5Y neuroblastoma cells, using the patch-clamp method in the whole-cell configuration. In separate experiments, cells were exposed to static fields of 1, 5, and 75 G, to time-varying fields of 1 and 5 G, and to combined static and time-varying fields tuned for resonance of Na+, K+, Ca2+, or H+. To increase sensitivity, measurements were made on cells connected by gap junctions. For each cell, the effect of the field was evaluated on the basis of 100 trials consisting of a 5-s exposure immediately followed by a 5-s control period. In each experiment, the field had no discernible effect on the transmembrane current in the vicinity of zero current (- 50 mV voltage clamp). The sensitivity of the measuring system was such that we would have detected a current corresponding to a change in membrane potential as small as 38 microV. Consequently, if sensitivity of mammalian cells to magnetic fields is mediated by subthreshold changes in membrane potential, as in sensory transduction of sound, light, and other stimuli, then the ion channels responsible for the putative changes are probably present only in specialized sensory neurons or neuroepithelial cells. A change in transmembrane potential in response to magnetic fields is not a general property of excitable cells in culture.  相似文献   

3.
In excised inside-out membrane patches of the human colon carcinoma HT-29cl.19A cells a large conductance (373±10 pS) chloride channel was found. Channel activity could only be observed after excision of patches from cells incubated with calcium ionophore. The channel was never observed in cell-attached patches. The channel was strongly voltage dependent, being open only between +30 and –30 mV clamp potentials. The selectivity sequence among anions, deduced from reversal potentials, was I>Br>Cl>F>gluconate. The PNa/PCl was 0.09. Although a similar type of channel, has been described earlier, this is the first report stating its appearance in patches of intestinal epithelial cells requiring the combined action of Ca2+ ionophore and excision, suggesting its control by an intracellular compound.  相似文献   

4.
G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of Gq/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.  相似文献   

5.
Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor lipid of the inner leaflet of the plasma membrane that controls the activity of numerous proteins and serves as a source of second messengers. This multifunctionality of PI(4,5)P2 relies on mechanisms ensuring transient appearance of PI(4,5)P2 clusters in the plasma membrane. One such mechanism involves phosphorylation of PI(4)P to PI(4,5)P2 by the type I phosphatidylinositol-4-phosphate 5-kinases (PIP5KI) at discrete membrane locations coupled with PI(4)P delivery/synthesis at the plasma membrane. Simultaneously, both PI(4)P and PI(4,5)P2 participate in anchoring PIP5KI at the plasma membrane via electrostatic bonds. PIP5KI isoforms are also selectively recruited and activated at the plasma membrane by Rac1, talin, or AP-2 to generate PI(4,5)P2 in ruffles and lamellipodia, focal contacts, and clathrin-coated pits. In addition, PI(4,5)P2 can accumulate at sphingolipid/cholesterol-based rafts following activation of distinct membrane receptors or be sequestered in a reversible manner due to electrostatic constrains posed by proteins like MARCKS.  相似文献   

6.
The effects of dantrolene on myelinated frog nerve fibers were studied in voltage clamp experiments. Dantrolene shifted the potential-dependent parameters describing Na+ permeability towards more negative membrane potentials. The findings are interpreted as a change in the negative surface charge of the membrane.  相似文献   

7.
Summary Steady membrane voltage fluctuations have been observed in atrial muscle fibres of the carp. These voltage fluctuations produce minute mechanical oscillations, as revealed by an interference contrast microscope. The steady voltage fluctuations may be related to abnormal automaticity in the heart.Supported by the U.S. Israel Binational Science Foundation, Jerusalem, and is part of a thesis to be submitted by Ms Akselrod to the Tel-Aviv University. We thank Ms M. Bendikowski for her efficient technical assistance.  相似文献   

8.
Summary Modulations in rat hepatic microsomal UDP-glucuronyl transferase activity have been observed during carbon tetrachloride (CCl4) poisoning, with a large decrease in the enzyme cooperativity and increase in the membrane fluidity, occurring 30 min after administration. The results strengthen the possibility that an increase in microsomal membrane fluidity may be an early key event in liver injury induced by CCl4.Acknowledgments. This work was supported by funds of the University of Athens.  相似文献   

9.
In recent articles, Zangari (1994) and Karakostas (1997) observe that while an ε-extended version of the proper orthochronous Lorentz group O+ (1,3) exists for values of ε not equal to zero, no similar ε-extended version of its double covering group SL(2, C) exists (where ε=1−2εR, with εR the non-standard simultaneity parameter of Reichenbach). Thus, they maintain, since SL(2, C) is essential in describing the rotational behaviour of half-integer spin fields, and since there is empirical evidence for such behaviour, ε-coordinate transformations for any value of ε≠0 are ruled out empirically. In this article, I make two observations:  相似文献   

10.
The neurohormone melatonin plays a fundamental role in neuroimmunomodulation of several mammalian species, including mice. This effect is supported by the existence of specific melatonin-binding sites in murine immunocompetent organs. Moreover, using melatonin receptor analogues, several effects of the neurohormone on mice physiology through its membrane and nuclear receptors have been described. The expression of these receptors has never been studied, despite indirect evidence showing the presence of melatonin receptor in the murine immune system. At present, the MT1 and MT2 membrane receptors, and nuclear receptors belonging to the RZR/ROR family have been related to the immunomodulator effect of melatonin. Here, we show the presence of membrane and nuclear melatonin-binding sites in mouse thymus and spleen, using the specific melatonin membrane (S 20098) and nuclear (CGP 52608) receptor agonist. To confirm the presence of melatonin receptors, we analyzed the presence of membrane and nuclear receptor mRNA and protein by RT-PCR, Southern blot, and Western blot. Thus, we show that MT1 and ROR receptor mRNA and protein are expressed in both thymus and spleen, while MT2 receptor mRNA is only detected in the thymus. This expression of melatonin receptors strongly supports the idea of an immunomodulatory role of melatonin through its receptors.Received 2 June 2003; received after revision 6 August 2003; accepted 14 August 2003  相似文献   

11.
Direct membrane injury by CCl4, in situations excluding metabolic activation, was evaluated in saponin-permeabilized hepatocytes and in microsomes by measuring immediate Ca2+ efflux. A good correlation appears between the Ca2+ efflux and the level of CCl4 in the membrane and also the variations in fluidity. Mixtures of CCl4 with water-soluble vehicles were used to improve the dispersion of CCl4 in the medium. The mixtures varied in their ability to elicit the membrane effects of CCl4. The performance of ethanol and, to a lesser degree, other alcohols, suggests the existence of a water stable structural organization between CCl4 and these amphiphilic vehicles, facilitating the transfer of CCl4 to the membrane.  相似文献   

12.
Actin-directed processes such as membrane ruffling and cell migration are regulated by specific signal transduction pathways that become activated by growth factor receptors. The same signaling pathways that lead to modifications in actin dynamics also activate cPLA2α. Moreover, arachidonic acid, the product of cPLA2α activity, is involved in regulation of actin dynamics. Therefore, it was investigated whether cPLA2α plays a role in actin dynamics, more specifically during growth factor-induced membrane ruffling and cell migration. Upon stimulation of ruffling and cell migration by growth factors, endogenous cPLA2α and its active phosphorylated form were shown to relocate at protrusions of the cell membrane involved in actin and membrane dynamics. Inhibition of cPLA2α activity with specific inhibitors blocked growth factor-induced membrane and actin dynamics, suggesting an important role for cPLA2α in these processes.  相似文献   

13.
The tumor suppressor function of PTEN is attributed to its phospholipid phosphatase activity that dephosphorylates the plasma membrane phosphatidylinositol-(3,4,5)-triphosphate [PtdIns(3,4,5)P3]. Implicit in this notion is that PTEN needs to be targeted to the plasma membrane to dephosphorylate PtdIns(3,4,5)P3. However, the recruitment of PTEN to the plasma membrane is not fully understood. Here, we demonstrate PTEN accumulation in the detergent-insoluble fraction of neuronal cells in response to treatment by the proteasome inhibitor lactacystin. First, lactacystin induces apoptosis and the activation of caspase-3 in cultured cortical neurons. Second, PTEN undergoes proteolysis to form a truncated 50-kDa form that lacks parts of its C-terminal tail. Third, the truncated PTEN is stably associated with the detergent-insoluble fraction in which the plasma membrane marker protein flotillin-1 resides. Taken together, our results suggest that truncation and accumulation of PTEN to the detergent-insoluble membrane fraction are two events associated with the apoptotic signals of the proteasome inhibitor in cortical neurons.Received 24 March 2004; received after revision 26 May 2004; accepted 5 June 2004  相似文献   

14.
Summary Electrophysiological experiments demonstrate that triiodothyronine (T3) exerts a direct effect on the membrane of a strain of cultured rat pituitary tumor cells, GH3/B6. These cells respond to pressure application of T3 (2–5 nl, concentration 1·10–10 M) with an increase in the membrane resistance (Rm) and a hyperpolarization. Spontaneously firing cells become silent.  相似文献   

15.
Mammalian two-pore channels (TPCs) are activated by the low-abundance membrane lipid phosphatidyl-(3,5)-bisphosphate (PI(3,5)P2) present in the endo-lysosomal system. Malfunction of human TPC1 or TPC2 (hTPC) results in severe organellar storage diseases and membrane trafficking defects. Here, we compared the lipid-binding characteristics of hTPC2 and of the PI(3,5)P2-insensitive TPC1 from the model plant Arabidopsis thaliana. Combination of simulations with functional analysis of channel mutants revealed the presence of an hTPC2-specific lipid-binding pocket mutually formed by two channel regions exposed to the cytosolic side of the membrane. We showed that PI(3,5)P2 is simultaneously stabilized by positively charged amino acids (K203, K204, and K207) in the linker between transmembrane helices S4 and S5 and by S322 in the cytosolic extension of S6. We suggest that PI(3,5)P2 cross links two parts of the channel, enabling their coordinated movement during channel gating.  相似文献   

16.
The fluorescent dye Merocyanine 540 (MC540) is often used as a probe to monitor the molecular packing of phospholipids in the outer leaflet of biomembranes. In a previous study we showed that the increased staining of erythrocytes with a perturbed membrane structure was mainly due to an increase in the fluorescence yield of cell-bound MC540, rather than to an increase of the number of bound molecules. Erythrocytes and ghosts exposed to continuous fluxes of H2O2 exhibited pronounced lipid peroxidation. Further, red blood cells subjected to this form of oxidative stress also showed increased staining with MC540. It appeared that this was caused by a strong increase in binding of MC540, together with a slight red shift of the fluorescence emission maximum and a small increase in the fluorescence yield of bound MC540. The changed MC540 binding characteristics were not observed when lipid peroxidation was suppressed by the presence of the antioxidant BHT in the incubation medium. However, open ghosts exposed to H2O2 showed no increase of MC540 binding, excluding a direct involvement of lipid peroxidation. Measurement of fluorescence emission spectra and gel filtration studies showed that MC540 can bind to H2O2-exposed hemoglobin. Experiments with erythrocytes lysed in hypotonic medium after exposure to H2O2 revealed that peroxidation of lipids with H2O2 induced a non-specific permeabilization of the plasma membrane to MC540, thereby allowing MC540 to bind to the oxidatively denatured, more hydrophobic hemoglobin. These results indicate that conclusions about packing of phospholipids in the outer leaflet of the membrane based on increased MC540-staining should be drawn with care. Received 27 September 1996; received after revision 5 November 1996; accepted 27 November 1996  相似文献   

17.
Human lymphocyte melatonin, through membrane and nuclear receptors binding, acts as an activator in IL-2 production. Antagonism of membrane melatonin receptors using luzindole exacerbates the drop of the IL-2 production induced by PGE2 in peripheral blood mononuclear and Jurkat cells. This paper studies the melatonin membrane and nuclear receptors interplay in PGE2-diminished IL-2 production. The decrease in IL-2 production after PGE2 and/or luzindole administration correlated with downregulation in the nuclear receptor RORα. We also highlighted a role of cAMP in the pathway, because forskolin mimicked the effects of luzindole and/or PGE2 in the RORα expression. Finally, a significant RORα downregulation was observed in T cells permanently transfected with inducible MT1 antisense. In conclusion, we show a novel connection between melatonin membrane receptor signalling and RORα expression, opening a new way to understand melatonin regulation in lymphocyte physiology. Received 23 September 2008; received after revision 19 November 2008; accepted 21 November 2008  相似文献   

18.
Type 2 phosphatidic acid phosphatases (PAP2s) can be either soluble or integral membrane enzymes. In bacteria, integral membrane PAP2s play major roles in the metabolisms of glycerophospholipids, undecaprenyl-phosphate (C55-P) lipid carrier and lipopolysaccharides. By in vivo functional experiments and biochemical characterization we show that the membrane PAP2 coded by the Bacillus subtilis yodM gene is the principal phosphatidylglycerol phosphate (PGP) phosphatase of B. subtilis. We also confirm that this enzyme, renamed bsPgpB, has a weaker activity on C55-PP. Moreover, we solved the crystal structure of bsPgpB at 2.25 Å resolution, with tungstate (a phosphate analog) in the active site. The structure reveals two lipid chains in the active site vicinity, allowing for PGP substrate modeling and molecular dynamic simulation. Site-directed mutagenesis confirmed the residues important for substrate specificity, providing a basis for predicting the lipids preferentially dephosphorylated by membrane PAP2s.  相似文献   

19.
We have recently demonstrated, using electron paramagnetic resonance (EPR) spectroscopy, that insulin receptor internalization in response to insulin incubation (down-regulation) in human erythrocytes is accompanied by a transient decrease in membrane order, as measured by the 2T order parameter. Since membrane lipids play such an important role in receptor internalization, we investigated the possible effects that an alteration of the normally-occurring lipid profile might have on down-regulation and the concomitant transient decrease in membrane order. Consequently, human erythrocytes enriched with cholesterol and erythrocytes from cirrhotic patients were examined, because both of these groups of cells have a higher cholesterol/phospholipid molar ratio (CH/PL) than controls. The 5-nitroxystearate spin label, which inserts into the lipid bilayer of cell membranes, was used to monitor changes in 2T for a 3-h period at 37°C. We report here that both cholesterol-enriched and cirrhotic erythrocytes do not down-regulate, as demonstrated by binding assays, and that they do not show the typical transient decrease in membrane order observed in controls. The results seem to indicate that a more ordered membrane inhibits internalization of the insulin receptor in erythrocytes, and that an increase in membrane disorder is necessary for insulin receptor down-regulation.  相似文献   

20.
Summary Morphogenetic fields must be generated by mechanisms based on known physical forces which include gravitational forces, mechanical forces, electrical forces, or some combination of these. While it is unrealistic to expect a single force, such as a voltage gradient, to be the sole cause of a morphogenetic event, spatial and temporal information about the electrical fields and ion concentration gradients in and around a cell or embryo undergoing morphogenesis can take us one step further toward understanding the entire morphogenetic mechanism. This is especially true because one of the handful of identified morphogens is Ca2+, an ion that will not only generate a current as it moves, but which is known to directly influence the plasma membrane's permeability to other ions, leading to other transcellular currents. It would be expected that movements of this morphogen across the plasma membrane might generate ionic currents and gradients of both electrical potential and intracellular concentration. Such ionic currents have been found to be integral components of the morphogenetic mechanism in some cases and only secondary components in other cases. My goal in this review is to discuss examples of both of these levels of involvement that have resulted from investigations conducted during the past several years, and to point to areas that are ripe for future investigation. This will include the history and theory of ionic current measurements, and a discussion of examples in both plant and animal systems in which ionic currents and intracellular concentration gradients are integral components of morphogenesis as well as cases in which they play only a secondary role. By far the strongest cases for a direct role of ionic currents in morphogenesis is the polarizing fucoid egg where the current is carried in part by Ca2+ and generates an intracellular concentration gradient of this ion that orients the outgrowth, and the insect follicle in which an intracellular voltage gradient is responsible for the polarized transport from nurse cell to oocyte. However, in most of the systems studied, the experiments to determine if the observed ionic currents are directly involved in the morphogenetic mechanism are yet to be done. Our experience with the fucoid egg and the fungal hypha ofAchlya suggest that it is the change in the intracellular ion concentration resulting from the ionic current that is critical for morphogenesis.  相似文献   

(a)There is an isomorphism between even-indexed 2-spinor fields and Minkowski world-tensors which can be exploited to obtain generally covariant expressions of such spinor fields.
(b)There is a 2-1 isomorphism between odd-indexed 2-spinor fields and Minkowski world-tensors which can be exploited to obtain generally covariant expressions for such spinor fields up to a sign. Evidence that the components of such fields do take unique values is not decisive in favour of the realist in the debate over the conventionality of simultaneity in so far as such fields do not play a role in clock synchrony experiments in general, and determinations of the one-way speed of light in particular.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号