首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G Rougon  M Noble  A W Mudge 《Nature》1983,305(5936):715-717
Neuropeptides may have functions in the central nervous system (CNS) other than altering neuronal excitability. For example, they may act as regulators of brain metabolism by affecting glycogenolysis. Since it has been suggested that glial cells might provide metabolic support for neuronal activity, they may well be one of the targets for neuropeptide regulation of metabolism. Consistent with this view are reports that peptide-containing nerve terminals have been seen apposed to astrocytes, but it is also quite possible that peptides could act at sites lacking morphological specialization. Primary cultures containing CNS glial cells have been shown to respond to beta-adrenergic agonists with an increase in cyclic AMP and, as a result, with an increase in glycogenolysis and have also been shown to respond to a variety of peptides with changes in cyclic AMP. In the study reported here, we have examined the effects of several peptides on relatively pure cultures of rat astrocytes. We demonstrate that the increase in intracellular cyclic AMP induced by noradrenaline is markedly enhanced by somatostatin and substance P and is inhibited by enkephalin, even though these peptides on their own have little or no effect on the basal levels of cyclic AMP. Vasoactive intestinal peptide (VIP) on the other hand increases cyclic AMP in the absence of noradrenaline. These results suggest that neuropeptides influence glial cells as well as neurones in the CNS and, in the case of somatostatin and substance P, provide further examples of neuropeptides modulating the response to another chemical signal without having a detectable action on their own.  相似文献   

2.
Graded persistent activity in entorhinal cortex neurons   总被引:30,自引:0,他引:30  
Egorov AV  Hamam BN  Fransén E  Hasselmo ME  Alonso AA 《Nature》2002,420(6912):173-178
Working memory represents the ability of the brain to hold externally or internally driven information for relatively short periods of time. Persistent neuronal activity is the elementary process underlying working memory but its cellular basis remains unknown. The most widely accepted hypothesis is that persistent activity is based on synaptic reverberations in recurrent circuits. The entorhinal cortex in the parahippocampal region is crucially involved in the acquisition, consolidation and retrieval of long-term memory traces for which working memory operations are essential. Here we show that individual neurons from layer V of the entorhinal cortex-which link the hippocampus to extensive cortical regions-respond to consecutive stimuli with graded changes in firing frequency that remain stable after each stimulus presentation. In addition, the sustained levels of firing frequency can be either increased or decreased in an input-specific manner. This firing behaviour displays robustness to distractors; it is linked to cholinergic muscarinic receptor activation, and relies on activity-dependent changes of a Ca2+-sensitive cationic current. Such an intrinsic neuronal ability to generate graded persistent activity constitutes an elementary mechanism for working memory.  相似文献   

3.
Long-term motor cortex plasticity induced by an electronic neural implant   总被引:1,自引:0,他引:1  
Jackson A  Mavoori J  Fetz EE 《Nature》2006,444(7115):56-60
It has been proposed that the efficacy of neuronal connections is strengthened when there is a persistent causal relationship between presynaptic and postsynaptic activity. Such activity-dependent plasticity may underlie the reorganization of cortical representations during learning, although direct in vivo evidence is lacking. Here we show that stable reorganization of motor output can be induced by an artificial connection between two sites in the motor cortex of freely behaving primates. An autonomously operating electronic implant used action potentials recorded on one electrode to trigger electrical stimuli delivered at another location. Over one or more days of continuous operation, the output evoked from the recording site shifted to resemble the output from the corresponding stimulation site, in a manner consistent with the potentiation of synaptic connections between the artificially synchronized populations of neurons. Changes persisted in some cases for more than one week, whereas the output from sites not incorporated in the connection was unaffected. This method for inducing functional reorganization in vivo by using physiologically derived stimulus trains may have practical application in neurorehabilitation after injury.  相似文献   

4.
The (Na(+)+K+)ATPase, an integral membrane protein located in virtually all animal cells, couples the hydrolysis of ATP to the countertransport of Na+ and K+ ions across the plasma membrane. In neurons, a large portion of cellular energy is expended by this enzyme to maintain the ionic gradients that underlie resting and action potentials. Although neurotransmitter regulation of the enzyme in brain has been reported, such regulation has been characterized either as a nonspecific phenomenon or as an indirect effect of neurotransmitter-induced changes in ionic gradients. We report here that the neurotransmitter dopamine, through a synergistic effect on D1 and D2 receptors, inhibits the (Na(+)+K+)ATPase activity of isolated striatal neurons. Our data provide unequivocal evidence for regulation by a neurotransmitter of a neuronal ion pump. They also demonstrate that synergism between D1 and D2 receptors, which underlies many of the electrophysical and behavioural effects of dopamine in the mammalian brain, can occur on the same neuron. In addition, the results support the possibility that dopamine and other neurotransmitters can regulate neuronal excitability through the novel mechanism of pump inhibition.  相似文献   

5.
Schoups A  Vogels R  Qian N  Orban G 《Nature》2001,412(6846):549-553
The adult brain shows remarkable plasticity, as demonstrated by the improvement in fine sensorial discriminations after intensive practice. The behavioural aspects of such perceptual learning are well documented, especially in the visual system. Specificity for stimulus attributes clearly implicates an early cortical site, where receptive fields retain fine selectivity for these attributes; however, the neuronal correlates of a simple visual discrimination task remained unidentified. Here we report electrophysiological correlates in the primary visual cortex (V1) of monkeys for learning orientation identification. We link the behavioural improvement in this type of learning to an improved neuronal performance of trained compared to naive neurons. Improved long-term neuronal performance resulted from changes in the characteristics of orientation tuning of individual neurons. More particularly, the slope of the orientation tuning curve that was measured at the trained orientation increased only for the subgroup of trained neurons most likely to code the orientation identified by the monkey. No modifications of the tuning curve were observed for orientations for which the monkey had not been trained. Thus training induces a specific and efficient increase in neuronal sensitivity in V1.  相似文献   

6.
The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.  相似文献   

7.
8.
Bala AD  Spitzer MW  Takahashi TT 《Nature》2003,424(6950):771-774
The owl can discriminate changes in the location of sound sources as small as 3 degrees and can aim its head to within 2 degrees of a source. A typical neuron in its midbrain space map has a spatial receptive field that spans 40 degrees--a width that is many times the behavioural threshold. Here we have quantitatively examined the relationship between neuronal activity and perceptual acuity in the auditory space map in the barn owl midbrain. By analysing changes in firing rate resulting from small changes of stimulus azimuth, we show that most neurons can reliably signal changes in source location that are smaller than the behavioural threshold. Each source is represented in the space map by a focus of activity in a population of neurons. Displacement of the source causes the pattern of activity in this population to change. We show that this change predicts the owl's ability to detect a change in source location.  相似文献   

9.
M Dragunow  H A Robertson 《Nature》1987,329(6138):441-442
Alterations in neuronal gene expression have been proposed to account for permanent changes in brain function such as learning and memory. In particular, it has been suggested that protooncogenes such as c-fos may be rapidly induced in conditions that lead to neuronal plasticity and evoke permanent changes in the expression of effector genes. Concentrations of the c-fos proto-oncogene increase rapidly following depolarization-induced calcium influx in non-dividing neuronally differentiated PC 12 cells. Recently, the presence and induction of c-fos in the adult brain and spinal cord has been observed. Here we report that electrically-induced seizure activity, which leads to a permanent increase in the response of the brain to future seizures (kindling), rapidly and transiently increases c-fos protein-like immunoreactivity in the nuclei of granule cells in the rat dentate gyrus. These results suggest that c-fos protein is present within the nuclei of adult mammalian neurons, and could be involved in plastic changes in the nervous system associated with seizure activity.  相似文献   

10.
Wang X  Lu T  Snider RK  Liang L 《Nature》2005,435(7040):341-346
It has been well documented that neurons in the auditory cortex of anaesthetized animals generally display transient responses to acoustic stimulation, and typically respond to a brief stimulus with one or fewer action potentials. The number of action potentials evoked by each stimulus usually does not increase with increasing stimulus duration. Such observations have long puzzled researchers across disciplines and raised serious questions regarding the role of the auditory cortex in encoding ongoing acoustic signals. Contrary to these long-held views, here we show that single neurons in both primary (area A1) and lateral belt areas of the auditory cortex of awake marmoset monkeys (Callithrix jacchus) are capable of firing in a sustained manner over a prolonged period of time, especially when they are driven by their preferred stimuli. In contrast, responses become more transient or phasic when auditory cortex neurons respond to non-preferred stimuli. These findings suggest that when the auditory cortex is stimulated by a sound, a particular population of neurons fire maximally throughout the duration of the sound. Responses of other, less optimally driven neurons fade away quickly after stimulus onset. This results in a selective representation of the sound across both neuronal population and time.  相似文献   

11.
L A Wong  J P Gallagher 《Nature》1989,341(6241):439-442
Acetylcholine activates both nicotinic and muscarinic receptors in the central nervous system. Although the action of acetylcholine at muscarinic receptor has been well characterized, relatively little is known at the cellular level concerning nicotinic receptor stimulation in brain. Central nicotinic receptors have been implicated in Alzheimer's disease, seizure activity, the generation of slow-wave theta rhythm in the hippocampus and the potential abuse liability of nicotine. At the neuronal level, nicotinic agonists have been most often associated with postsynaptically mediated excitation and membrane depolarization at various sites, including Renshaw spinal motoneurons, locus coeruleus and the medial habenular nucleus. Nicotine acting presynaptically can produce either excitation or inhibition indirectly through the release of endogeneous transmitters or modulators. Whereas a direct inhibitory effect of nicotine has been suggested by one in vivo extracellular recording study in rat cerebellar Purkinje neurons, the mechanism(s) underlying this action is not yet known. We now report our findings obtained using in vitro intracellular methods in a submerged brain slice preparation in which application of nicotinic agonists to rat dorsolateral septal neurons reveal a direct membrane hyperpolarization mediated by an increase in potassium conductance.  相似文献   

12.
Womelsdorf T  Fries P  Mitra PP  Desimone R 《Nature》2006,439(7077):733-736
Our capacity to process and respond behaviourally to multiple incoming stimuli is very limited. To optimize the use of this limited capacity, attentional mechanisms give priority to behaviourally relevant stimuli at the expense of irrelevant distractors. In visual areas, attended stimuli induce enhanced responses and an improved synchronization of rhythmic neuronal activity in the gamma frequency band (40-70 Hz). Both effects probably improve the neuronal signalling of attended stimuli within and among brain areas. Attention also results in improved behavioural performance and shortened reaction times. However, it is not known how reaction times are related to either response strength or gamma-band synchronization in visual areas. Here we show that behavioural response times to a stimulus change can be predicted specifically by the degree of gamma-band synchronization among those neurons in monkey visual area V4 that are activated by the behaviourally relevant stimulus. When there are two visual stimuli and monkeys have to detect a change in one stimulus while ignoring the other, their reactions are fastest when the relevant stimulus induces strong gamma-band synchronization before and after the change in stimulus. This enhanced gamma-band synchronization is also followed by shorter neuronal response latencies on the fast trials. Conversely, the monkeys' reactions are slowest when gamma-band synchronization is high in response to the irrelevant distractor. Thus, enhanced neuronal gamma-band synchronization and shortened neuronal response latencies to an attended stimulus seem to have direct effects on visually triggered behaviour, reflecting an early neuronal correlate of efficient visuo-motor integration.  相似文献   

13.
Muotri AR  Chu VT  Marchetto MC  Deng W  Moran JV  Gage FH 《Nature》2005,435(7044):903-910
  相似文献   

14.
A site for the potentiation of GABA-mediated responses by benzodiazepines   总被引:6,自引:0,他引:6  
M A Simmonds 《Nature》1980,284(5756):558-560
The benzodiazepines have been well characterised as minor tranquillizers and attempts to explain their unique spectrum of activity have included suggestions that they may interact with a variety of neurotransmitter systems. Recently, a possible interaction with the gamma-aminobutyric acid (GABA) system has received most attention. Benzodiazepines potentiate the actions of both synaptically released and exogenously administered GABA on mammalian neuronal preparations but the site of action within the GABA response mechanism has not been determined. Binding studies suggest that benzodiazepines combine with highly specific sites in the neuronal membrane and that these sites have some indirect association with GABA receptors. To investigate this association further in a functioning GABA system, quantitative studies have been made in vitro on neuronal depolarisations mediated by GABA receptor activation. Evidence has already been presented that bicuculline is most probably a competitive antagonist at the GABA receptor while picrotoxin acts as an antagonist at a separate site. Here flurazepam is shown to attenuate preferentially the action of picrotoxin rather than bicuculline and a model is suggested for the site of action of these drugs within the GABA response mechanism.  相似文献   

15.
The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (gamma-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus.  相似文献   

16.
17.
Tritsch NX  Yi E  Gale JE  Glowatzki E  Bergles DE 《Nature》2007,450(7166):50-55
Spontaneous activity in the developing auditory system is required for neuronal survival as well as the refinement and maintenance of tonotopic maps in the brain. However, the mechanisms responsible for initiating auditory nerve firing in the absence of sound have not been determined. Here we show that supporting cells in the developing rat cochlea spontaneously release ATP, which causes nearby inner hair cells to depolarize and release glutamate, triggering discrete bursts of action potentials in primary auditory neurons. This endogenous, ATP-mediated signalling synchronizes the output of neighbouring inner hair cells, which may help refine tonotopic maps in the brain. Spontaneous ATP-dependent signalling rapidly subsides after the onset of hearing, thereby preventing this experience-independent activity from interfering with accurate encoding of sound. These data indicate that supporting cells in the organ of Corti initiate electrical activity in auditory nerves before hearing, pointing to an essential role for peripheral, non-sensory cells in the development of central auditory pathways.  相似文献   

18.
Gutnisky DA  Dragoi V 《Nature》2008,452(7184):220-224
Our perception of the environment relies on the capacity of neural networks to adapt rapidly to changes in incoming stimuli. It is increasingly being realized that the neural code is adaptive, that is, sensory neurons change their responses and selectivity in a dynamic manner to match the changes in input stimuli. Understanding how rapid exposure, or adaptation, to a stimulus of fixed structure changes information processing by cortical networks is essential for understanding the relationship between sensory coding and behaviour. Physiological investigations of adaptation have contributed greatly to our understanding of how individual sensory neurons change their responses to influence stimulus coding, yet whether and how adaptation affects information coding in neural populations is unknown. Here we examine how brief adaptation (on the timescale of visual fixation) influences the structure of interneuronal correlations and the accuracy of population coding in the macaque (Macaca mulatta) primary visual cortex (V1). We find that brief adaptation to a stimulus of fixed structure reorganizes the distribution of correlations across the entire network by selectively reducing their mean and variability. The post-adaptation changes in neuronal correlations are associated with specific, stimulus-dependent changes in the efficiency of the population code, and are consistent with changes in perceptual performance after adaptation. Our results have implications beyond the predictions of current theories of sensory coding, suggesting that brief adaptation improves the accuracy of population coding to optimize neuronal performance during natural viewing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号