首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1   总被引:49,自引:0,他引:49  
When mammals fast, glucose homeostasis is achieved by triggering expression of gluconeogenic genes in response to glucagon and glucocorticoids. The pathways act synergistically to induce gluconeogenesis (glucose synthesis), although the underlying mechanism has not been determined. Here we show that mice carrying a targeted disruption of the cyclic AMP (cAMP) response element binding (CREB) protein gene, or overexpressing a dominant-negative CREB inhibitor, exhibit fasting hypoglycaemia [corrected] and reduced expression of gluconeogenic enzymes. CREB was found to induce expression of the gluconeogenic programme through the nuclear receptor coactivator PGC-1, which is shown here to be a direct target for CREB regulation in vivo. Overexpression of PGC-1 in CREB-deficient mice restored glucose homeostasis and rescued expression of gluconeogenic genes. In transient assays, PGC-1 potentiated glucocorticoid induction of the gene for phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in gluconeogenesis. PGC-1 promotes cooperativity between cyclic AMP and glucocorticoid signalling pathways during hepatic gluconeogenesis. Fasting hyperglycaemia is strongly correlated with type II diabetes, so our results suggest that the activation of PGC-1 by CREB in liver contributes importantly to the pathogenesis of this disease.  相似文献   

2.
Hu X  Lazar MA 《Nature》1999,402(6757):93-96
  相似文献   

3.
4.
Wei P  Zhang J  Egan-Hafley M  Liang S  Moore DD 《Nature》2000,407(6806):920-923
Organisms encounter a wide range of foreign compounds--or 'xenobiotics'--with potentially harmful consequences. The cytochrome P450 (CYP) enzymes metabolize xenobiotics and thus are a primary defence against these compounds. Increased expression of specific CYP genes in response to particular xenobiotics is a central component of this defence, although such induction can also increase production of toxic metabolites. Here we show that the nuclear receptor CAR mediates the response evoked by a class of xenobiotics known as the 'phenobarbital-like inducers'. The strong activation of Cyp2b10 gene expression by phenobarbital, or by the more potent TCPOBOP, is absent in mice lacking the CAR gene. These animals also show decreased metabolism of the classic CYP substrate zoxazolamine and a complete loss of the liver hypertrophic and hyperplastic responses to these inducers. Cocaine causes acute hepatotoxicity in wild-type mice previously exposed to phenobarbital-like inducers and this toxicity is also absent in the CAR-deficient animals. Thus, loss of CAR function alters sensitivity to toxins, increasing or decreasing it depending on the compound. Modulation of CAR activity in humans may significantly affect metabolism of drugs and other xenobiotics.  相似文献   

5.
6.
C C Blake  S J Oatley 《Nature》1977,268(5616):115-120
High resolution X-ray analysis of the hormone-binding protein prealbumin has shown that it has a structural complementarity to double-helical DNA. The proposed binding site is composed of two symmetry-related beta-sheets containing a pair of helically disposed arms, which can interact with the bases in the wide groove of DNA. A palindromic target sequence is indicated by the symmetry of the protein. The two identical thyroid hormone binding sites on prealbumin are located in a channel that runs completely through the molecule. These two structural features suggest prealbumin as a model for the thyroid hormone nuclear receptor, providing a number of detailed predictions of its properties.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号