首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
设r是大于1的奇数,m是偶数,Ur和Vr是适合Vr Ur√-1=(m √-1)r的整数,a=|Vr|,b=|Ur|,c=m2 1.证明了:当r≡3(mod 4),m≡2(mod 4),m>r/π且c是素数方幂时,方程ax by=cz仅有正整数解(x,y,z)=(2,2,r).  相似文献   

2.
设a,b,C是两两互素的正整数,min(a,b,C)>1.论文证明了:当b(?)1(mod 8),c(?)5(mod 8)且c是素数方幂时,如果ax by=cz有正整数解(x,y,z)=(2,2,r),其中r是大于1的奇数,则该方程的例外解(x,y,z)都满足x=2以及y(?)z(?)1(mod 2).  相似文献   

3.
设(a,b,c)是一组适合a为偶数的本原商高数,该文证明了:当c是素数方幂时,方程x2 by=cz仅有正整数解(x,y,z)=(a,2,2)可使y是偶数.  相似文献   

4.
设(a,b,c)是一组a为偶数的本原商高数.证明了,当b是适合b≠1(mod 16)的奇素数时,Terai猜想成立.  相似文献   

5.
设(a,b,c)是一组适合a为偶数的本原商高数,证明了:当c是素数方幂时,方程x2 by=cz仅有正整数解(x,y,z)=(a,2,2)可使y是偶数.  相似文献   

6.
设p是奇素数,t∈{3,4,8}.运用初等方法讨论了方程x2 p2=yn适合n>2的正整数解(x,y,n)的个数,证明了该方程至多有1组正整数解(x,y,n)适合n=t.  相似文献   

7.
证明了方程n^x+(n+1)=(n+2)^z没有正整数解(x,z),其中n是大于1的正整数.  相似文献   

8.
设r是大于 1的奇数 ,u ,v是适合 2 |u ,gcd(u ,v) =1,u >2rv/π的正整数 .又设a ,b ,c是适合a+b - 1=(u+v - 1) r 以及c=u2 +v2 的正整数 .确定了Jacobi符号的值 .这一结果有助于指数Diophantine方程ax+by =cz 的求解  相似文献   

9.
设b是大于3的正奇数。运用初等方法以及同余性质讨论了不定方程2yny-x=(b+2)x-bx的正整数解(x,y,n)的存在性问题,对于b7(mod8)的情况给出了该方程的全部解,从而部分地解决了该方程的可解性问题。  相似文献   

10.
设r是正整数,a,b,c。是大于1的互素正整数。文章证明了:如果a2 br=c,a=-1(m od-br 1)且c是奇数,则方程ax by=cz仅有正整数解(x,y,z)=(2,r,1)。  相似文献   

11.
;设r是大于1的奇数, m是偶数, Ur和Vr是适合Vr+Ur√-1=(m+-1)r的整数.运用初等方法, 证明了:如果a=|Vr|,b=|Ur|,c=m2+1且b是素数, r≡3(mod 4), m≡2(mod 4),m>(r)/(π), 那么方程ax+by=cz仅有正整数解(x,y,z)=(2,2,r).  相似文献   

12.
设m为正整数,且a=m^7-21m^5+35m^3-7m,b=7m^6-35m^4+21m^2-1,c=m^2+1.本文同时利用2个代数数的线性型下界估计以及2个有理数方幂之差的p-adie值的下界估计的一些深入结果,证明了对正整数m≥2.4×10^9,丢番图方程a^x+b^y=c^z仅有正整数解(x,y,z)=(2,2,7).  相似文献   

13.
对正整数a,b,c给出了丢番图方程ax4+by4=cz2当(a,b,c)=(2,3,5)时的全部正整数解,结合佟瑞洲关于(a,b,c)=(5,3,2)时方程ax4+by4=cz2的结果,我们给出了丢番图方程ax4+by4=cz2当min{a,b,c}>1且max{a,b,c}≤5时的全部正整数解.从而拓展了Mordell等人关于ax4+by4=cz2的结果.  相似文献   

14.
对正整数a,b,c给出了丢番图方程ax4+by4=cz2当(a,b,c)=(5,2,7)时的全部正整数解.从而拓展了Mordell等人关于ax4+by4=cz2的结果.  相似文献   

15.
设a,b,c是给定的正整数,运用初等数论方法证明了:当a+b2 l-1=c2,b≡5(mod 24),c是适合c≡-1(mod b2l)的奇数,其中l是任意正整数时,方程ax+by=cz仅有正整数解(x,y,z)=(1,2l-1,2).  相似文献   

16.
给出了三元线性型ax+by=CZ的最大不不可表出数等于ab/(a,b)+(a,b)c-a-b-c的充要条件。  相似文献   

17.
关于丢番图方程ax2+by2+cz2=dw2的整数解   总被引:2,自引:1,他引:2  
当丢番图方程αx^2 by^2 cz^2=dω^2有整数解x0,y0,z0,ω0(ω0≠1),(x0,y0,z0,ω0)=1时,给出了它满足(x,y,x,ω)=1的全部整数解的公式:{x=(αn^2 bm^2 cp^2)x0-2n(αnx0 bmy0 cpz0)/t,y=(αn^2 bm^2 cp^2)y0-2m(αnx0 bmy0 cpz0)/t,z=(αn^2 bm^2 cp^2)z0-2p(αnx0 bmy0 cpz0)/t,ω=(αn^2 bm^2 cp^2)ω0/t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号