首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simpson F 《Nature》2001,412(6847):632-635
Seismic anisotropy is thought to result from the strain-induced lattice-preferred orientation of mantle minerals, especially olivine, owing to shear waves propagating faster along the a-axis of olivine crystals than along the other axes. This anisotropy results in birefringence, or 'shear-wave splitting', which has been investigated in numerous studies. Although olivine is also anisotropic with respect to electrical conductivity (with the a-axis being most conductive), few studies of the electrical anisotropy of the upper mantle have been undertaken, and these have been limited to relatively shallow depths in the lithospheric upper mantle. Theoretical models of mantle flow have been used to infer that, for progressive simple shear imparted by the motion of an overriding tectonic plate, the a-axes of olivine crystals should align themselves parallel to the direction of plate motion. Here, however, we show that a significant discrepancy exists between the electromagnetic strike of the mantle below Australia and the direction of present-day absolute plate motion. We infer from this discrepancy that the a-axes of olivine crystals are not aligned with the direction of the present-day plate motion of Australia, indicating resistance to deformation of the mantle by plate motion.  相似文献   

2.
Marone F  Romanowicz B 《Nature》2007,447(7141):198-201
The most likely cause of seismic anisotropy in the Earth's upper mantle is the lattice preferred orientation of anisotropic minerals such as olivine. Its presence reflects dynamic processes related to formation of the lithosphere as well as to present-day tectonic motions. A powerful tool for detecting and characterizing upper-mantle anisotropy is the analysis of shear-wave splitting measurements. Because of the poor vertical resolution afforded by this type of data, however, it has remained controversial whether the splitting has a lithospheric origin that is 'frozen-in' at the time of formation of the craton, or whether the anisotropy originates primarily in the asthenosphere, and is induced by shear owing to present-day absolute plate motions. In addition, predictions from surface-wave-derived models are largely incompatible with shear-wave splitting observations. Here we show that this disagreement can be resolved by simultaneously inverting surface waveforms and shear-wave splitting data. We present evidence for the presence of two layers of anisotropy with different fast-axis orientations in the cratonic part of the North American upper mantle. At asthenospheric depths (200-400 km) the fast axis is sub-parallel to the absolute plate motion, confirming the presence of shear related to current tectonic processes, whereas in the lithosphere (80-200 km), the orientation is significantly more northerly. In the western, tectonically active, part of North America, the fast-axis direction is consistent with the absolute plate motion throughout the depth range considered, in agreement with a much thinner lithosphere.  相似文献   

3.
Mainprice D  Tommasi A  Couvy H  Cordier P  Frost DJ 《Nature》2005,433(7027):731-733
The mineral olivine dominates the composition of the Earth's upper mantle and hence controls its mechanical behaviour and seismic anisotropy. Experiments at high temperature and moderate pressure, and extensive data on naturally deformed mantle rocks, have led to the conclusion that olivine at upper-mantle conditions deforms essentially by dislocation creep with dominant [100] slip. The resulting crystal preferred orientation has been used extensively to explain the strong seismic anisotropy observed down to 250 km depth. The rapid decrease of anisotropy below this depth has been interpreted as marking the transition from dislocation to diffusion creep in the upper mantle. But new high-pressure experiments suggest that dislocation creep also dominates in the lower part of the upper mantle, but with a different slip direction. Here we show that this high-pressure dislocation creep produces crystal preferred orientations resulting in extremely low seismic anisotropy, consistent with seismological observations below 250 km depth. These results raise new questions about the mechanical state of the lower part of the upper mantle and its coupling with layers both above and below.  相似文献   

4.
Lithospheric-scale transform faults play an important role in the dynamics of global plate motion. Near-surface deformation fields for such faults are relatively well documented by satellite geodesy, strain measurements and earthquake source studies, and deeper crustal structure has been imaged by seismic profiling. Relatively little is known, however, about deformation taking place in the subcrustal lithosphere--that is, the width and depth of the region associated with the deformation, the transition between deformed and undeformed lithosphere and the interaction between lithospheric and asthenospheric mantle flow at the plate boundary. Here we present evidence for a narrow, approximately 20-km-wide, subcrustal anisotropic zone of fault-parallel mineral alignment beneath the Dead Sea transform, obtained from an inversion of shear-wave splitting observations along a dense receiver profile. The geometry of this zone and the contrast between distinct anisotropic domains suggest subhorizontal mantle flow within a vertical boundary layer that extends through the entire lithosphere and accommodates the transform motion between the African and Arabian plates within this relatively narrow zone.  相似文献   

5.
Mid-mantle deformation inferred from seismic anisotropy   总被引:2,自引:0,他引:2  
Wookey J  Kendall JM  Barruol G 《Nature》2002,415(6873):777-780
With time, convective processes in the Earth's mantle will tend to align crystals, grains and inclusions. This mantle fabric is detectable seismologically, as it produces an anisotropy in material properties--in particular, a directional dependence in seismic-wave velocity. This alignment is enhanced at the boundaries of the mantle where there are rapid changes in the direction and magnitude of mantle flow, and therefore most observations of anisotropy are confined to the uppermost mantle or lithosphere and the lowermost-mantle analogue of the lithosphere, the D" region. Here we present evidence from shear-wave splitting measurements for mid-mantle anisotropy in the vicinity of the 660-km discontinuity, the boundary between the upper and lower mantle. Deep-focus earthquakes in the Tonga-Kermadec and New Hebrides subduction zones recorded at Australian seismograph stations record some of the largest values of shear-wave splitting hitherto reported. The results suggest that, at least locally, there may exist a mid-mantle boundary layer, which could indicate the impediment of flow between the upper and lower mantle in this region.  相似文献   

6.
利用SKS波分裂方法,对布设在华南地区的宽频带流动地震观测台阵数据进行分析。研究结果表明,华南块体(SCB)的SKS波分裂自西向东存在明显的变化。在华南块体西部克拉通岩石圈保留完整的四川盆地区域,SKS波分裂不明显,反映该区域岩石圈厚且缺乏大规模的一致性变形;在四川盆地东缘褶皱带区域,SKS波分裂快波方向主要为NNE向,分裂延迟时间可以达到1s左右,记录了该区域岩石圈地幔经历的一致的显著变形;华南块体东部的SKS波分裂快波方向主要为ENE向,分裂延迟时间为1s左右,该区域各向异性主要来自软流圈流动的贡献,与大地幔楔的流动方向契合;四川盆地东缘以东200km范围内,各向异性结果大部分显示为Null值,显示该区域在地质历史上可能发生过复杂的地球动力学过程。  相似文献   

7.
Shiraishi R  Ohtani E  Kanagawa K  Shimojuku A  Zhao D 《Nature》2008,455(7213):657-660
The mineral akimotoite, ilmenite-structured MgSiO(3), exists at the bottom of the Earth's mantle transition zone and within the uppermost lower mantle, especially under low-temperature conditions. Akimotoite is thought to be a major constituent of the harzburgite layer of subducting slabs, and the most anisotropic mineral in the mantle transition zone. It has been predicted that if akimotoite crystals are preferentially oriented by plastic deformation, a cold subducted slab would be extremely anisotropic. However, there have been no studies of crystallographic preferred orientations and very few reports of plastic deformation experiments for MgSiO(3) ilmenite. Here we present plastic deformation experiments on polycrystalline akimotoite, which were conducted at confining pressures of 20-22 GPa and temperatures of 1,000-1,300 degrees C. We found a change in crystallographic preferred orientation pattern of akimotoite with temperature, where the c-axis maximum parallel to the compression direction develops at high temperature, whereas the c axes are preferentially oriented parallel to the shear direction or perpendicular to the compression direction at lower temperature. The previously reported difference in compressional-wave seismic anisotropy between the northern and southern segments of the Tonga slab at depths of the mantle transition zone can conceivably be attributed to the difference in the crystallographic preferred orientation pattern of akimotoite at varying temperature within the slab.  相似文献   

8.
Magma-assisted rifting in Ethiopia   总被引:1,自引:0,他引:1  
Kendall JM  Stuart GW  Ebinger CJ  Bastow ID  Keir D 《Nature》2005,433(7022):146-148
The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere. However, Buck has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere.  相似文献   

9.
显微构造在阿克塞-台湾地学大断面研究中的应用揭示了该区带岩石圈上地慢、下地壳、中地壳和上地壳4个圈层中不同的显微构造特征、微观变形机制和变形的物理化学条件。通过对4个圈层中微观和宏观变形特征、变形机制的对比分析,建立起区带大陆岩石四变形及动力学模式。  相似文献   

10.
Temperature logging curves at 8 boreholes and well-testing temperature data at 142 boreholes are used to determine geotemperature gradients in the Bohai Basin. The thermal conductivities of 86 rock samples are measured at laboratory and the effects of porosity and temperature are corrected to obtain conductivities in situ. Terrestrial heat flow densities at 76 wells are determined based on these data. The distribution of the heat flow indicates that the terrestrial heat flow in the Bohai Basin is relatively high with an average value of 65.8 mW/m2. This characteristic is caused by the tectonic evolution of the basin. During Cenozoic, the lithosphere stretched intermittently and the crust thinned so that heat conducted from the mantle increased and formed thermal abnormity at depth beneath the basin.  相似文献   

11.
Kincaid C  Griffiths RW 《Nature》2003,425(6953):58-62
The subduction of oceanic lithosphere plays a key role in plate tectonics, the thermal evolution of the mantle and recycling processes between Earth's interior and surface. Information on mantle flow, thermal conditions and chemical transport in subduction zones come from the geochemistry of arc volcanoes, seismic images and geodynamic models. The majority of this work considers subduction as a two-dimensional process, assuming limited variability in the direction parallel to the trench. In contrast, observationally based models increasingly appeal to three-dimensional flow associated with trench migration and the sinking of oceanic plates with a translational component of motion (rollback). Here we report results from laboratory experiments that reveal fundamental differences in three-dimensional mantle circulation and temperature structure in response to subduction with and without a rollback component. Without rollback motion, flow in the mantle wedge is sluggish, there is no mass flux around the plate and plate edges heat up faster than plate centres. In contrast, during rollback subduction flow is driven around and beneath the sinking plate, velocities increase within the mantle wedge and are focused towards the centre of the plate, and the surface of the plate heats more along the centreline.  相似文献   

12.
Mizukami T  Wallis SR  Yamamoto J 《Nature》2004,427(6973):432-436
Tectonic plate motion is thought to cause solid-state plastic flow within the underlying upper mantle and accordingly lead to the development of a lattice preferred orientation of the constituent olivine crystals. The mechanical anisotropy that results from such preferred orientation typically produces a direction of maximum seismic wave velocity parallel to the plate motion direction. This has been explained by the existence of an olivine preferred orientation with an 'a-axis' maximum parallel to the induced mantle flow direction. In subduction zones, however, the olivine a axes have been inferred to be arranged roughly perpendicular to plate motion, which has usually been ascribed to localized complex mantle flow patterns. Recent experimental work suggests an alternative explanation: under conditions of high water activity, a 'B-type' olivine preferred orientation may form, with the a-axis maximum perpendicular to the flow direction. Natural examples of such B-type preferred orientation are, however, almost entirely unknown. Here we document widespread B-type olivine preferred orientation patterns from a subduction-type metamorphic belt in southwest Japan and show that these patterns developed in the presence of water. Our discovery implies that mantle flow above subduction zones may be much simpler than has generally been thought.  相似文献   

13.
Green HW  Chen WP  Brudzinski MR 《Nature》2010,467(7317):828-831
Strong evidence exists that water is carried from the surface into the upper mantle by hydrous minerals in the uppermost 10-12?km of subducting lithosphere, and more water may be added as the lithosphere bends and goes downwards. Significant amounts of that water are released as the lithosphere heats up, triggering earthquakes and fluxing arc volcanism. In addition, there is experimental evidence for high solubility of water in olivine, the most abundant mineral in the upper mantle, for even higher solubility in olivine's high-pressure polymorphs, wadsleyite and ringwoodite, and for the existence of dense hydrous magnesium silicates that potentially could carry water well into the lower mantle (deeper than 1,000?km). Here we compare experimental and seismic evidence to test whether patterns of seismicity and the stabilities of these potentially relevant hydrous phases are consistent with a wet lithosphere. We show that there is nearly a one-to-one correlation between dehydration of minerals and seismicity at depths less than about 250?km, and conclude that the dehydration of minerals is the trigger of instability that leads to seismicity. At greater depths, however, we find no correlation between occurrences of earthquakes and depths where breakdown of hydrous phases is expected. Lastly, we note that there is compelling evidence for the existence of metastable olivine (which, if present, can explain the distribution of deep-focus earthquakes) west of and within the subducting Tonga slab and also in three other subduction zones, despite metastable olivine being incompatible with even extremely small amounts of water (of the order of 100?p.p.m. by weight). We conclude that subducting slabs are essentially dry at depths below 400?km and thus do not provide a pathway for significant amounts of water to enter the mantle transition zone or the lower mantle.  相似文献   

14.
对中国地震科学台阵探测项目一期于2011—2013年布设在红河断裂以西大理永平地区的5个流动台站进行横波分裂研究, 分别得到18, 14, 7, 9 和5个横波分裂参数测量结果, 并使用更精确的实际横波路径, 通过过量归一化方法进行改正, 研究该区域各向异性分层特征。结果显示, 研究区上地壳10 km深度之上存在各向异性强度大小相间的3层各向异性层, 其中第2层各向异性强度最小, 厚度为2~2.4 km; 第1层各向异性强度稍强, 厚度为4.1~5.0 km; 第3层各向异性强度最强。各向异性分层特征与前人在该区域的大地电磁测深结果吻合。结合滇西地区地壳中的低速异常、低电阻率和低Q值现象, 认为第3层的强各向异性是地幔物质上涌造成裂隙发育以及热流上传所致。  相似文献   

15.
The effect of water on the electrical conductivity of olivine   总被引:4,自引:0,他引:4  
Wang D  Mookherjee M  Xu Y  Karato S 《Nature》2006,443(7114):977-980
It is well known that water (as a source of hydrogen) affects the physical and chemical properties of minerals--for example, plastic deformation and melting temperature--and accordingly plays an important role in the dynamics and geochemical evolution of the Earth. Estimating the water content of the Earth's mantle by direct sampling provides only a limited data set from shallow regions (<200 km depth). Geophysical observations such as electrical conductivity are considered to be sensitive to water content, but there has been no experimental study to determine the effect of water on the electrical conductivity of olivine, the most abundant mineral in the Earth's mantle. Here we report a laboratory study of the dependence of the electrical conductivity of olivine aggregates on water content at high temperature and pressure. The electrical conductivity of synthetic polycrystalline olivine was determined from a.c. impedance measurements at a pressure of 4 GPa for a temperature range of 873-1,273 K for water contents of 0.01-0.08 wt%. The results show that the electrical conductivity is strongly dependent on water content but depends only modestly on temperature. The water content dependence of conductivity is best explained by a model in which electrical conduction is due to the motion of free protons. A comparison of the laboratory data with geophysical observations suggests that the typical oceanic asthenosphere contains approximately 10(-2) wt% water, whereas the water content in the continental upper mantle is less than approximately 10(-3) wt%.  相似文献   

16.
Goes S  Capitanio FA  Morra G 《Nature》2008,451(7181):981-984
It is well accepted that subduction of the cold lithosphere is a crucial component of the Earth's plate tectonic style of mantle convection. But whether and how subducting plates penetrate into the lower mantle is the subject of continuing debate, which has substantial implications for the chemical and thermal evolution of the mantle. Here we identify lower-mantle slab penetration events by comparing Cenozoic plate motions at the Earth's main subduction zones with motions predicted by fully dynamic models of the upper-mantle phase of subduction, driven solely by downgoing plate density. Whereas subduction of older, intrinsically denser, lithosphere occurs at rates consistent with the model, younger lithosphere (of ages less than about 60 Myr) often subducts up to two times faster, while trench motions are very low. We conclude that the most likely explanation is that older lithosphere, subducting under significant trench retreat, tends to lie down flat above the transition to the high-viscosity lower mantle, whereas younger lithosphere, which is less able to drive trench retreat and deforms more readily, buckles and thickens. Slab thickening enhances buoyancy (volume times density) and thereby Stokes sinking velocity, thus facilitating fast lower-mantle penetration. Such an interpretation is consistent with seismic images of the distribution of subducted material in upper and lower mantle. Thus we identify a direct expression of time-dependent flow between the upper and lower mantle.  相似文献   

17.
Yoshino T  Matsuzaki T  Yamashita S  Katsura T 《Nature》2006,443(7114):973-976
The oceanic asthenosphere is observed to have high electrical conductivity, which is highly anisotropic in some locations. In the directions parallel and normal to the plate motion, the conductivity is of the order of 10(-1) and 10(-2) S m(-1), respectively, which cannot be explained by the conductivity of anhydrous olivine. But because hydrogen can be incorporated in olivine at mantle pressures, this observation has been attributed to olivine hydration, which might cause anisotropically high conductivity by proton migration. To examine this hypothesis, here we report the effect of water on electrical conductivity and its anisotropy for hydrogen-doped and undoped olivine at 500-1,500 K and 3 GPa. The hydrous olivine has much higher conductivity and lower activation energy than anhydrous olivine in the investigated temperature range. Nevertheless, extrapolation of the experimental results suggests that conductivity of hydrous olivine at the top of the asthenosphere should be nearly isotropic and only of the order of 10(-2) S m(-1). Our data indicate that the hydration of olivine cannot account for the geophysical observations, which instead may be explained by the presence of partial melt elongated in the direction of plate motion.  相似文献   

18.
McNamara AK  van Keken PE  Karato S 《Nature》2002,416(6878):310-314
Seismological observations reveal highly anisotropic patches at the bottom of the Earth's lower mantle, whereas the bulk of the mantle has been observed to be largely isotropic. These patches have been interpreted to correspond to areas where subduction has taken place in the past or to areas where mantle plumes are upwelling, but the underlying cause for the anisotropy is unknown-both shape-preferred orientation of elastically heterogeneous materials and lattice-preferred orientation of a homogeneous material have been proposed. Both of these mechanisms imply that large-strain deformation occurs within the anisotropic regions, but the geodynamic implications of the mechanisms differ. Shape-preferred orientation would imply the presence of large elastic (and hence chemical) heterogeneity whereas lattice-preferred orientation requires deformation at high stresses. Here we show, on the basis of numerical modelling incorporating mineral physics of elasticity and development of lattice-preferred orientation, that slab deformation in the deep lower mantle can account for the presence of strong anisotropy in the circum-Pacific region. In this model-where development of the mineral fabric (the alignment of mineral grains) is caused solely by solid-state deformation of chemically homogeneous mantle material-anisotropy is caused by large-strain deformation at high stresses, due to the collision of subducted slabs with the core-mantle boundary.  相似文献   

19.
20.
干热岩的勘探开发近年来已成为学术界的研究热点,但相关研究大多是从开发角度进行研究,而对干热岩中热量富集传递的研究甚少.为了解干热岩岩体中热量富集与传导机理,通过对前人研究成果的整理与总结,结合构造地质学、传热学、地热学、矿物岩石学等理论方法,进行岩石三轴热导率的实验.结果表明,岩石的三轴热导率存在差异,使得地下热流在岩...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号