首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
针对头部姿态估计常用的人脸检测、姿态估计两步串联框架中流程复杂、耦合性高、整体鲁棒性低的问题,提出了一种基于改进SSD模型的人脸检测与头部姿态估计融合算法.通过拓展SSD模型,设计了人脸检测与姿态估计融合网络模型,在多层次卷积特征图上检测人脸,并估计头部姿态;采用端到端训练模式进行模型训练,简化了头部姿态估计任务的处理流程.在Pointing′04和300W-LP数据集上进行了试验.结果表明,本模型能够在满足实时性要求的前提下有效地完成检测任务与估计任务,在两个数据集中的pitch预测平均绝对误差分别达到了4.80°和6.48°,这充分证明了所提出算法的实用性和鲁棒性.  相似文献   

2.
3.
阐述了基于分类的头部姿态估计算法的基本原理,提出了在特定条件下的两种分类姿态估计方法,并且分析了这两类方法的优缺点。  相似文献   

4.
教室一直以来都是教师进行教学活动的重要场所,为了充分利用课堂监控系统并加强对学生课堂状态的监测,设计了基于头部姿态识别的学生学习状态检测系统.首先,对SSD模型算法的检测后处理中非极大值抑制(NMS)算法进行优化,精准去除冗余候选框;其次,结合系统的应用场景——教室,对SSD算法模型的预测特征图进行选取,在保证模型检测...  相似文献   

5.
为了提高在线资源推荐的性能,采用深度学习卷积神经网络(Convolutional neural network, CNN)进行资源推荐,同时对资源-用户特征进行双注意力机制特征提取,以进一步提高推荐精准度。对资源-用户特征进行编码并初始化,分别进行通道注意力机制运算和空间注意力机制运算。将两个注意力机制的运算结果加权求和得到新的用户-资源特征。建立基于CNN的在线资源推荐模型,并以资源和用户的最小特征差作为损失函数进行迭代优化,从而求解出CNN网络参数。通过双注意力机制的用户-资源特征输入到CNN模型,并执行训练以获得符合用户需求的推荐结果。试验结果表明,通过合理设置双注意力机制通道数及卷积核尺寸等参数,可以有效提高双注意力CNN的推荐性能。与常用资源推荐算法相比,所提算法在推荐准确度及稳定性方面均具有一定的提升。  相似文献   

6.
针对人脸识别中在非限定条件下(如背景、光照等因素发生变化时)人脸多角度多姿态识别精度低的问题与现有基于识别模型的方法无法快速更新人脸类别,提出了基于图片特征与人脸姿态的识别方法,通过对人脸姿态的识别,最大程度的匹配人脸数据库中的人脸信息,使用VGG16卷积神经网络训练模型提取图片特征,生成特征向量,再使用支持向量机分别训练提取出的特征,与人脸数据库中信息进行比对,从而精确识别人脸。通过在Pubfig与FERET人脸库上实验结果表明,所采用的算法精度较高。  相似文献   

7.
基于二阶梯度朝向直方图特征的头部姿态估计   总被引:1,自引:0,他引:1  
定义和提取与头部姿态紧密相关的特征是基于图像表观的头部姿态估计方法的关键步骤。该文提出将二阶梯度朝向直方图特征作为头部姿态图像表示,用于单帧图像的头部姿态估计。首先将图像划分成网格形式,对每个图像单元计算梯度朝向直方图,将相邻若干个图像单元组成图像块,对块内所有直方图元素之间进行成对组合得到成对关系向量,所有图像块的成对关系向量串联起来作为最终图像表示。该图像表示包含高阶的梯度朝向分布统计信息,有很强的姿态描述能力。实验结果表明:该方法比原始的梯度朝向直方图和GaFour等先进方法有更高的分类准确率。  相似文献   

8.
高精度鲁棒的座舱头部姿态跟踪器研究   总被引:1,自引:0,他引:1  
针对复杂座舱环境设计了一个由inside-out(IO)光学跟踪器和outside-in(OI)光学跟踪器组成的新型座舱头部跟踪器.提出一种新颖的混合跟踪算法,利用扩展卡尔曼滤波器和融合滤波器融合座舱跟踪器中IO跟踪器和OI跟踪器的姿态信息,建立了实验装置验证提出的姿态融合算法.初步实验结果显示,与单一IO或OI跟踪器相比,该混合跟踪算法能够使座舱头部跟踪器获得更精确、更稳定、更鲁棒的位置方向信息.验证了所设计的座舱头部姿态跟踪器的结构合理性和所提出的混合跟踪算法的有效性.  相似文献   

9.
基于深度学习方法,运用Faster R-CNN目标检测架构和ZFNet卷积神经网络,针对微装配系统目标的特点对网络进行训练,在此基础上设计了一个网络对识别目标进行姿态检测.实验结果表明:采用深度学习方法可以有效地对部分遮挡的目标进行识别并检测其姿态,相比于传统方法,该方法对环境适应性更强且速度更快,具有实际应用价值.  相似文献   

10.
研究了声源定位技术在鼾声检测上的应用,主要研究鼾声的声学特性、声源定位技术原理,并利用声源定位技术对人体打鼾时头部姿态进行识别.采用广义互相关函数法对多路声音采集系统采集到的鼾声信号进行延迟估计计算,根据得到的相对时延信息进行声音定位,结合定位信息和朝向信息推断出当前受试者打鼾时头部姿态.采用数据采集卡进行高速信号采集,使用虚拟仪器Labview进行信号处理和算法实现,实验中受试者以不同头部姿态在该系统监测下模拟打鼾,通过该系统检测头部姿态,综合判断正确率达到80%.  相似文献   

11.
为了节约传输带宽和存储资源,成像设备和系统一般对图像和视频进行了有损压缩. 由于分块量化编码,JPEG图像往往存在明显的块效应. 去除图像的块效应不仅能够改善使用者的视觉体验,还有利于其他计算机视觉任务的开展. 为此,本文提出了一种基于多尺度宽激活残差注意力网络(MWRAN)的图像去块效应方法. MWRAN主要由多尺度宽激活残差注意力模块(MWRAB)构建而成. 提出的MWRAB不仅能够激活更多的非线性特征以促进信息在网络中的流动,还能够捕获丰富的图像多尺度特征. 此外,通过提出的轻量的差异感知通道注意力(LCCA),MWRAB能够对学习到的特征进行自适应地调整以关注更重要的信息. 消融实验验证了MWRAB的有效性. 在常用的基准数据集上,MWRAN取得了比几种先进的图像去块效应方法更高的客观评价指标和更接近原图的主观视觉效果.  相似文献   

12.
将深度卷积神经网络引入网格质量评价问题有望代替网格工程师完成繁杂的网格质量评价工作,节省计算流体力学数值模拟的人力成本,但现有方法的准确率和效率仍需要提高.因此,本文提出一种基于卷积注意力网络的网格质量评价方法.首先,本文提出在轻量级卷积神经网络模型中嵌入通道注意力的方式以同时提升准确率和效率;其次,设计了一个神经网络模型CANet用于网格质量评价任务;最后,通过Z-Score标准化对数据进行预处理,解决输入数据分布不一致的问题,以进一步提升准确率.实验结果表明,与现有方法相比,CANet可以达到更优的准确率97.06%,并且在效率上也有至少34.9%的提升.  相似文献   

13.
焊接是一种重要的连接技术,但是焊缝缺陷会直接影响焊接结构的性能和使用寿命。焊缝缺陷的种类和特征的多样性增加了缺陷检测的复杂性。首先,提出一种新颖的并行残差注意力模块,在通道和空间维度上充分利用全局平均池化和全局最大池化来捕获全局特征,并与输入特征相乘,自适应的选择缺陷特征,显著提升了网络模型的特征表达能力。其次,针对焊缝缺陷长宽比悬殊的问题,利用注意力机制指导锚框自学习图像特征,预测锚框的位置和形状,围绕缺陷区域自适应生成非均匀分布的任意形状的感兴趣区域。最后,设计了端到端的由注意力引导感知的深度学习网络模型。为验证所提模型的有效性,在包含3 403张图像(其中1 001张有缺陷)的X射线焊缝数据集上,通过定性的分析和定量的对比。实验结果表明:检测指标平均精度均值(mean average precision, mAP)达到了66.74%,与原算法相比提升了5.78%,平均交并比(mean intersection over union, mIoU)提升了7.21%,基本满足对焊缝缺陷的高精度检测。  相似文献   

14.
环境和荷载协同作用导致的路面病害对道路使用性能和安全性能的影响日益突出。现有图像智能识别算法难以实现处理速度和计算量的平衡。针对道路病害快速准确实时识别的需求,对石家庄损伤较为严重的路面进行实地拍照,结合已有图片,采用数据增强技术构建了市政道路病害数据集,并且提出了一种基于MobileNetV3网络的轻量化道路病害识别网络模型GEM-MobileNetV3。该模型首先使用Ghost模块代替MobileNetV3网络基本单元中的1×1卷积;然后结合改进后的高效通道注意力机制ECA模块提取病害目标的重要特征;最后将网络浅层的ReLU激活函数替换为泛化能力更强的Mish激活函数,提高模型的整体性能。通过消融实验与对比实验,验证了新模型的有效性。实验结果表明,新模型准确率达到96.33%,其参数量与计算量较MobileNetV3模型分别降低了37.9%和36%。提出的新模型在保持较高识别准确率的同时有效降低了模型复杂度,为在低成本计算平台上实现高准确率实时识别提供了新途径。  相似文献   

15.
时间型网络隐蔽信道是一种隐蔽性极高的信息泄露方式.其作为APT攻击的主要通信手段,对网络安全产生了极大威胁.目前针对隐蔽信道的检测方法通用性不足、误检率高,且人工提取流量特征耗时耗力.本文提出了一种基于灰度图像转化的检测方法.该方法将报文到达时间间隔归一化,转换成像素值,再将其转为灰度图像,由此把一维序列分类问题转成二维图像分类问题.本文使用卷积神经网络自动获取图像特征,并利用卷积块注意力模块,从空间与通道两个维度进行特征自适应优化.本文用合法流量和隐蔽信道流量组成的数据集训练网络,所得到的二分类模型用于判别被检测流量是否为时间型隐蔽信道流量.最后将提出的方法与现有的4种检测方法做对比.实验结果表明,本文方法具有更高的精确率和召回率,所得模型的通用性更好且误检率更低.  相似文献   

16.
基于遗传算法的人工神经网络学习算法   总被引:27,自引:0,他引:27  
为了克服和改进BP算法的不足,提出了一种基于遗传算法的神经网络学习算法,仿真结果表明,该算法具有无比的优越性,可避免BP算法易于陷入局部极小值,训练速度慢、误差函数必须可导、受网络结构的限制等缺陷。  相似文献   

17.
网络表示学习方法将信息网络表示为低维稠密携带网络节点特征信息的实数向量,应用于下游机器学习任务的输入,随着机器学习与深度学习的发展,网络表示学习拥有强大的建模能力且应用广泛。对网络表示学习方法、应用进行了归纳总结。首先,对当前国内外网络表示学习方法进行梳理归类,分为传统方法、基于网络结构的嵌入、融入属性信息的嵌入,以及基于谱域的图卷积、基于空间的图卷积和图attention网络,按类别对各类模型详细阐述,对比模型之间的适用性和方法特点;其次,介绍了网络表示学习的相关应用,包括推荐系统领域、生物医药领域等,整理常用的数据集、开源实现的表示学习模型和强大的图深度学习库供研究者参考调用;最后,对网络表示学习的发展趋势进行了总结与展望。未来可在深层的图神经网络学习、动态和异构网络的表示、网络模型的泛化能力等方面继续开展研究。  相似文献   

18.
故障诊断对电力系统的稳定运行至关重要。当配电网的拓扑结构发生较大变化时,难以获取大量带有标签的暂态数据,导致传统的故障预测模型精度难以提高。针对此问题,提出一种将特征迁移和深度学习相结合的配电网故障诊断新方法。首先,采集配电网不同线路的零序电流构造故障特征集;其次,引入加权半监督迁移成分分析(semi-supervised transfer component analysis, SSTCA)方法,利用混合核函数将不同拓扑结构下的特征样本映射到同一特征空间中,缩小数据间的分布差异性;最后,将映射后的源域样本输入卷积神经网络中进行分类训练,并测试映射后的目标域样本。通过Simulink仿真表明,在改变配电网拓扑结构的新场景下,所提的特征迁移方法与其他方法相比,对目标域故障定位精度最高,达到98%以上。  相似文献   

19.
针对采用大样本离线训练的车辆识别分类器在新场景中性能显著下降的问题,提出了一种具有样本自标注能力的车辆识别迁移学习算法,并采用概率神经网络(probability neural netw ork,PNN)进行分类器训练.首先,提出一种基于多细节先验信息的样本标注策略,融合复杂度、垂直平面和相对速度等先验信息实现新样本的自动标注;然后,充分利用PNN训练速度快以及增加新样本时只需分类器进行局部更新的特点,将其引入到分类器训练模型中,取代传统机器学习算法中的Adaboost分类器.实验结果表明:该算法在新场景下的新样本标注准确率高达99.76%.通过迁移学习,新场景的车辆识别分类器性能较通用分类器在检测率和误检率指标上均有显著提升.  相似文献   

20.
针对MobileNetV2网络在图像分类任务中特征表达不足的问题,提出一种结合注意力机制对MobileNet网络的改进策略。利用一种新颖的高效且无参的注意力模块,同时结合I-block模块来替换MobileNet网络中的倒残差模块,采用RReLU激活函数替代原ReLU激活函数保留更多特征,结合inception结构进行多尺度特征提取与融合,使其可以提供更强的多尺度特征表达并服务于图像分类任务,使用数据扩增技术,生成更多样本。与6种方法进行对比,实验结果表明,采用3D注意力机制的网络在数据集CIFAR-10、CIFAR-100上以最少的网络参数分别取得94.09%和75.35%的最高精度,表明该改进方法可以有效地进行快速图像分类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号