共查询到20条相似文献,搜索用时 15 毫秒
1.
针对K-means聚类算法对初始聚类中心敏感问题,提出1种结合方差与误差平方和的优化算法.首先,该算法基于方差和距离选取k个位于不同区域且样本点相对集中的集合.然后,分别选取使这k个样本集合误差平方和最小的数据作为k个初始聚类中心.利用改进算法与其他算法将UCI数据库中所选取的数据集进行聚类划分,对比不同算法下的聚类结... 相似文献
2.
传统K-means 算法对于聚类初始点的选取和距离度量的计算异常敏感,因而很可能导致K-means 算法只能收敛得到局部最优解。为此,提出一种改进的K-means 算法,即K-means 聚类算法最优匹配算法,并进行了相关的算法实验分析。该改进算法首先对传统的K-means 聚类算法进行初始点的选取,并分析聚类结果。然后,分别从初始聚类中心的选择和距离算法的确定进行实验测试,引入轮廓系数评价聚类效果,分析实验结果可知,K-means 聚类算法最优匹配算法具有较好的稳定性和较高的聚类准确率。 相似文献
3.
4.
聚类算法作为一种重要的数据挖掘的方法,能找到样本中相对集中的区域。本文分析了一些常用聚类算法以及局限性,并且针对K-means算法中初始点的选择,讨论了一种改进的K-means算法的实现过程,以期得到比较理想的聚类效果。 相似文献
5.
6.
图像分割是图像处理中的重要环节,如何提高图像分割的准确度一直以来都是图像领域的研究重点及难点.K-means聚类算法作为经典聚类算法得到广泛应用,但是,k值的选取往往难以确定.针对这一问题,提出了一种改进的K-means算法.首先将输入的彩色图像转化为灰度图像,统计灰度直方图的峰值数,将其设定为聚类数k,然后对原图像的... 相似文献
7.
K-means算法是聚类方法中常用的一种划分方法.基于扩展划分的思想,提出了一种基于扩展的K-means聚类算法(EK-means),在一定程度上避免了聚类结果陷入局部解的现象,减少了原始K-means算法因采用误差平方和准则函数而出现将大的聚类簇分割开的情况.该算法使用了基于距离的技术来处理孤立点,引进了一种基于扩展的方法进行聚类.实验表明该算法可扩展性好,能够很好的识别出孤立点或噪声,并且有很好的精度. 相似文献
8.
李小展 《东莞理工学院学报》2011,18(1):29-32
针对原始K-means算法的一系列问题,提出一种基于半监督的K-means聚类改进算法,能够自动进行聚类,找出最优K值,并且最大限度地找出孤立点.首先根据样本集自身的特点,按照"类内尽可能相似"原则一步一步形成数据集,然后对数据集进行"去噪"与合并相似簇,最后,利用少量的标记信息指导和修正聚类结果.在UCI的多个数据集... 相似文献
9.
黄美璇 《佛山科学技术学院学报(自然科学版)》2010,28(2)
K-means算法需要人工设定聚类个数且易受孤立点影响,根据这个缺陷提出了一种新的改进算法。改进算法通过设定初始值及初始值的最大值,在聚类过程中自动获取聚类数k。实验结果表明,该算法在一定程度上缓解了K-means算法对初始值敏感及受孤立点影响的问题,能产生高质量的聚类结果。 相似文献
10.
为解决模糊层次聚类算法无法收敛的问题,提出一种改进的模糊层次聚类算法.算法在分群前先进行数据处理,将特征向量相同的群合并成一个新的群,再使用模糊层次聚类算法分群,最后使用K-means算法将类簇收敛为想要的数量.实验结果表明,本算法具有较好的稳定性和分群效果,聚类质量高. 相似文献
11.
针对传统K-means算法在初始质心选取的敏感性以及迭代计算的冗余性这两方面的缺陷,提出一种高效的聚类算法(ECA).根据数据对象的空间分布情况,首先采用空间划分预聚类算法(SDPCA)对数据集实现预聚类划分,然后采用基于邻近簇调整的优化聚类算法(OCANC)对预聚类成果进行优化处理,最终获取聚类成果.实验证明,该改进算法能消除对初始输入的敏感性,以更高的运行效率获取较高质量的聚类结果. 相似文献
12.
K-means聚类算法是近年来数据挖掘学科的一个研究热点和重点,该算法是基于划分的聚类分析算法.目前这种算法在聚类分析中得到了广泛应用。本文将介绍K-means聚类算法的主要思想,及其优缺点。针对该算法经常陷入局部最优,以及对孤立点敏感等缺点,提出了一种基于模拟退火算法的方法对其进行优化,可以有效地防止该算法陷入局部最优的情况。 相似文献
13.
K-means初始聚类中心优化算法研究 总被引:1,自引:1,他引:1
由于K-means算法对初始中心的依赖性而导致聚类结果可能陷入局部极小,而采用密度函数法的多中心
聚类并结合小类合并运算的聚类结果明显优于K-means的聚类结果。该算法的每一次迭代都是倾向于发现超球
面簇,尤其对于延伸状的不规则簇具有良好的聚类能力。 相似文献
14.
15.
基于信息熵改进的 K-means 动态聚类算法 总被引:1,自引:2,他引:1
杨玉梅 《重庆邮电大学学报(自然科学版)》2016,28(2):254-259
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题.因此,提出一个改进的K-means算法.改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果.实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升. 相似文献
16.
K-means聚类算法研究 总被引:1,自引:0,他引:1
K-means算法作为聚类分析算法,已被广泛地应用到诸多领域。本文研究了K-means算法的基本原理,并将其应用到高校学生入学信息分析中。高考学生入学的相关信息包含了大量重要的学习及其他方面的信息,对这些数据信息进行分析和研究,有助于教师对不同类别的学生进行不同方式的教学,做到因材施教。首先对学生的入学信息数据进行预处理,然后使用K-means算法,对学生信息进行分类评价;最后利用所获得的分类结果指导学生在大学期间的学习方向以及教师对学生的培养工作。 相似文献
17.
K-means 是一种基于划分的聚类算法,由于 K-means 算法在选择初始聚类中心时是随机选取 k 个点,因此一旦 k 个点选取不合理,将会误导聚类过程,得到一个不合理的聚类结果。在分析聚类结果对初值依赖性的基础上,对初值选取方法进行了分析和研究,采取“射靶”的原理进行类中心搜索。从实验结果中可以发现,改进后 K-means 得到的聚类结果更加稳定,对初始聚类中心的依赖性减弱了。 相似文献
18.
原始的k-means算法是从样本点的集合中随机选取K个中心,这种选取具有盲目性和随意性,它在很大程度上决定了算法的有效性.为消除选取初始中心的盲目性,应充分利用已有数据样本点的信息.采取对数据进行预处理的方式来选取初始中心.实验证明新的初始点的选取不仅提高了算法的计算效率,也提高了算法最终确定的聚类的精度. 相似文献
19.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。 相似文献
20.
提出一种改进K-means聚类算法——cnnK-means算法,优化学生成绩分析.分析结果表明,语文和数学成绩联系最大,数学和英语成绩联系最小,英语成绩对学生成绩的分类影响最直接和也最明显.如果想要提高学生的整体成绩,教育者需要在英语方面做出更大的努力. 相似文献