首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study identified aloe-emodin (AE, a hydroxyanthraquinone from Aloe vera and other plants) as a new anti-angiogenic compound with inhibitory effects in an in vivo angiogenesis assay and evaluates its effects on specific key steps of the angiogenic process. AE inhibits endothelial cell proliferation, but this effect is not cell specific, since AE also inhibits tumor cell proliferation. Cell migration and invasion are not remarkably affected by AE. On the other hand, AE has different effects on endothelial and tumor cell gelatinases. Two main targets of the pharmacological action of AE as an anti-angiogenic compound seem to be urokinase secretion and tubule formation of endothelial cells. Finally, AE produces a remarkable photocytotoxic effect on tumor cells. Taken together, our data indicate that AE can behave both as an anti-tumor and an anti-angiogenic compound and suggest that AE could be a candidate drug for photodynamic therapy. Received 7 September 2006; received after revision 17 October 2006; accepted 31 October 2006  相似文献   

2.
Thrombospondins: from structure to therapeutics   总被引:2,自引:0,他引:2  
The thrombospondins (TSPs) are a family of five proteins that are involved in the tissue remodeling that is associated with embryonic development, wound healing, synaptogenesis, and neoplasia. These proteins mediate the interaction of normal and neoplastic cells with the extracellular matrix and surrounding tissue. In the tumor microenvironment, TSP-1 has been shown to suppress tumor growth by inhibiting angiogenesis and by activating transforming growth factor beta. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival, and through effects on vascular endothelial cell growth factor bioavailability. In addition, TSP-1 may affect tumor cell function through interaction with cell surface receptors and regulation of extracellular proteases. Whereas the role of TSP-1 in the tumor microenvironment is the best characterized, the other TSPs may have similar functions. (Part of a Multi-author Review).  相似文献   

3.
Lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1, also known as OLR-1), is a class E scavenger receptor that mediates the uptake of oxLDL by vascular cells. LOX-1 is involved in endothelial dysfunction, monocyte adhesion, the proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, as well as plaque instability; all of these events are critical in the pathogenesis of atherosclerosis. These LOX-1-dependent biological processes contribute to plaque instability and the ultimate clinical sequelae of plaque rupture and life-threatening tissue ischemia. Administration of anti-LOX-1 antibodies inhibits atherosclerosis by decreasing these cellular events. Over the past decade, multiple drugs including naturally occurring antioxidants, statins, antiinflammatory agents, antihypertensive and antihyperglycemic drugs have been demonstrated to inhibit vascular LOX-1 expression and activity. Therefore, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases. This review aims to integrate the current understanding of LOX-1 signaling, regulation of LOX-1 by vasculoprotective drugs, and the importance of LOX-1 in the pathogenesis of atherosclerosis.  相似文献   

4.
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.  相似文献   

5.
New blood vessel formation, a process referred to as angiogenesis, is essential for embryonic development and for many physiological and pathological processes during postnatal life, including cancer progression. Endothelial cell adhesion molecules of the integrin family have emerged as critical mediators and regulators of angiogenesis and vascular homeostasis. Integrins provide the physical interaction with the extracellular matrix necessary for cell adhesion, migration and positioning, and induction of signaling events essential for cell survival, proliferation and differentiation. Antagonists of integrin alpha V beta 3 suppress angiogenesis in many experimental models and are currently tested in clinical trials for their therapeutic efficacy against angiogenesis-dependent diseases, including cancer. Furthermore, interfering with signaling pathways downstream of integrins results in suppression of angiogenesis and may have relevant therapeutic implications. In this article we review the role of integrins in endothelial cell function and angiogenesis. In the light of recent advances in the field, we will discuss their relevance as a therapeutic target to suppress tumor angiogenesis.  相似文献   

6.
The regulatory function of SPARC in vascular biology   总被引:1,自引:1,他引:0  
SPARC is a matricellular protein, able to modulate cell/ECM interactions and influence cell responses to growth factors, and therefore is particularly attuned to contribute to physiological processes involving changes in ECM and cell mobilization. Indeed, the list of biological processes affected by SPARC includes wound healing, tumor progression, bone formation, fibrosis, and angiogenesis. The process of angiogenesis is complex and involves a number of cellular processes such as endothelial cell proliferation, migration, ECM degradation, and synthesis, as well as pericyte recruitment to stabilize nascent vessels. In this review, we will summarize current results that explore the function of SPARC in the regulation of angiogenic events with a particular emphasis on the modulation of growth factor activity by SPARC in the context of blood vessel formation. The primary function of SPARC in angiogenesis remains unclear, as SPARC activity in some circumstances promotes angiogenesis and in others is more consistent with an anti-angiogenic activity. Undoubtedly, the mercurial nature of SPARC belies a redundancy of functional proteins in angiogenesis as well as cell-type-specific activities that alter signal transduction events in response to unique cellular milieus. Nonetheless, the investigation of cellular mechanisms that define functional activities of SPARC continue to contribute novel and exciting paradigms to vascular biology.  相似文献   

7.
Cell migration plays a central role in a variety of physiological and pathological processes during our whole life. Cellular movement is a complex, tightly regulated multistep process. Although the principle mechanisms of migration follow a defined general motility cycle, the cell type and the context of moving influences the detailed mode of migration. Endothelial cells migrate during vasculogenesis and angiogenesis but also in a damaged vessel to restore vessel integrity. Depending on the situation they migrate individually, in chains or sheets and complex signaling, intercellular signals as well as environmental cues modulate the process. Here, the different modes of cell migration, the peculiarities of endothelial cell migration and specific guidance molecules controlling this process will be reviewed.  相似文献   

8.
The biology of cell locomotion within three-dimensional extracellular matrix   总被引:22,自引:0,他引:22  
Cell migration in three-dimensional (3-D) extracellular matrix (ECM) is not a uniform event but rather comprises a modular spectrum of interdependent biophysical and biochemical cell functions. Haptokinetic cell migration across two-dimensional (2-D) surfaces consists of at least three processes: (i) the protrusion of the leading edge for adhesive cell-substratum interactions is followed by (ii) contraction of the cell body and (iii) detachment of the trailing edge. In cells of flattened morphology migrating slowly across 2-D substrate, contact-dependent clustering of adhesion receptors including integrins results in focal contact and stress fiber formation. While haptokinetic migration is predominantly a function of adhesion and deadhesion events lacking spatial barriers towards the advancing cell body, the biophysics of the tissues require a set of cellular strategies to overcome matrix resistance. Matrix barriers force the cells to adapt their morphology and change shape and/or enzymatically degrade ECM components, either by contact-dependent proteolysis or by protease secretion. In 3-D ECM, in contrast to 2-D substrate, the cell shape is mostly bipolar and the cytoskeletal organization is less stringent, frequently lacking discrete focal contacts and stress fibers. Morphologically large spindle-shaped cells (i.e., fibroblasts, endothelial cells, and many tumor cells) of high integrin expression and strong cytoskeletal contractility utilize integrin-dependent migration strategies that are coupled to the capacity to reorganize ECM. In contrast, a more dynamic ameboid migration type employed by smaller cells expressing low levels of integrins (i.e., T lymphocytes, dendritic cells, some tumor cells) is characterized by largely integrin-independent interaction strategies and flexible morphological adaptation to preformed fiber strands, without structurally changing matrix architecture. In tumor invasion and angiogenesis, migration mechanisms further comprise the migration of entire cell clusters or strands maintaining stringent cell-cell adhesion and communication while migrating. Lastly, cellular interactions, enzyme and cytokine secretion, and tissue remodeling provided by reactive stroma cells (i.e. fibroblasts and macrophages) contribute to cell migration. In conclusion, depending on the cellular composition and tissue context of migration, diverse cellular and molecular migration strategies can be developed by different cell types.  相似文献   

9.
Chemokines are a vertebrate-specific group of small molecules that regulate cell migration and behaviour in diverse contexts. So far, around 50 chemokines have been identified in humans, which bind to 18 different chemokine receptors. These are members of the seven-transmembrane receptor family. Initially, chemokines were identified as modulators of the immune response. Subsequently, they were also shown to regulate cell migration during embryonic development. Here, we discuss the influence of chemokines and their receptors on angiogenesis, or the formation of new blood vessels. We highlight recent advances in our understanding of how chemokine signalling might directly influence endothelial cell migration. We furthermore examine the contributions of chemokine signalling in immune cells during this process. Finally, we explore possible implications for disease settings, such as chronic inflammation and tumour progression.  相似文献   

10.
Statins: the new aspirin?   总被引:10,自引:0,他引:10  
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, have been described as the principal and the most effective class of drug to reduce serum cholesterol levels. Statin therapies have been shown to reduce cardiovascular events, including myocardial infarction, stroke, and death, significantly, by altering vascular atherosclerosis development in patients with or without coronary artery disease symptoms. Extensive use of statins has led to the increase of some undesirable effects that are heavily counterbalanced by the benefits. Indeed, pleiotropic effects extend far beyond cholesterol reduction and involve non-lipid-related mechanisms that modify endothelial functions, immunoinflammatory responses, smooth muscle cell activation, proliferation and migration, atherosclerotic plaque stability, and thrombus formation. In this review, we describe in detail the targets and mechanisms of action of statins. Received 6 June 2002; received after revision 6 September 2002; accepted 6 September 2002 RID="*" ID="*"Corresponding author.  相似文献   

11.
Summary Proteolytic enzymes play a key role in a variety of physiological processes in which the degradation of macromolecules is essential: angiogenesis, embryogenesis, bone and tissue remodelling, blood hemostasis and cell migration. The action of these enzymes is also crucial in the development of many pathological conditions such as wound healing, neoplasia, inflammation and arthritic disorders.the activity of proteases is negatively affected by specific protease-inhibitors. Various growth factors and other cytokines modulate the synthesis and secretion of both proteases and protease-inhibitors. The study of this regulation results in a better insight into (patho)physiology at the molecular level and promises to result in alternative treatment strategies.  相似文献   

12.
Cytokine-mediated proteolysis in tissue remodelling   总被引:2,自引:0,他引:2  
S Masure  G Opdenakker 《Experientia》1989,45(6):542-549
Proteolytic enzymes play a key role in a variety of physiological processes in which the degradation of macromolecules is essential: angiogenesis, embryogenesis, bone and tissue remodelling, blood hemostasis and cell migration. The action of these enzymes is also crucial in the development of many pathological conditions such as wound healing, neoplasia, inflammation and arthritic disorders. The activity of proteases is negatively affected by specific protease-inhibitors. Various growth factors and other cytokines modulate the synthesis and secretion of both proteases and protease-inhibitors. The study of this regulation results in a better insight into (patho)physiology at the molecular level and promises to result in alternative treatment strategies.  相似文献   

13.
We have recently found that celiac disease patient serum-derived autoantibodies targeted against transglutaminase 2 interfere with several steps of angiogenesis, including endothelial sprouting and migration, though the mechanism involved remained to be fully characterized. This study now investigated the processes underlying the antiangiogenic effects exerted by celiac disease patient antibodies on endothelial cells, with particular regard to the adhesion, migration, and polarization signaling pathway. We observed that celiac IgA reduced endothelial cell numbers by affecting adhesion without increasing apoptosis. Endothelial cells in the presence of celiac IgA showed weak attachment, a high susceptibility to detach from fibronectin, and a disorganized extracellular matrix due to a reduction of protein cross-links. Furthermore, celiac patient IgA led to secretion of active transglutaminase 2 from endothelial cells into the culture supernatants. Additionally, cell surface transglutaminase 2 mediated integrin clustering in the presence of celiac IgA was coupled to augmented expression of β1-integrin. We also observed that celiac patient IgA-treated endothelial cells had migratory defects and a less polarized phenotype when compared to control groups, and this was associated with the RhoA signaling pathway. These biological effects mediated by celiac IgA on endothelial cells were partially influenced but not completely abolished by R281, an irreversible extracellular transglutaminase 2 enzymatic activity inhibitor. Taken together, our results imply that celiac patient IgA antibodies disturb the extracellular protein cross-linking function of transglutaminase 2, thus altering cell-extracellular matrix interactions and thereby affecting endothelial cell adhesion, polarization, and motility.  相似文献   

14.
Presenilin-1 (PS1) gene encodes the catalytic component of γ-secretase, which proteolytically processes several type I transmembrane proteins. We here present evidence that the cytosolic peptide efnB2/CTF2 produced by the PS1/γ-secretase cleavage of efnB2 ligand promotes EphB4 receptor-dependent angiogenesis in vitro. EfnB2/CTF2 increases endothelial cell sprouting and tube formation, stimulates the formation of angiogenic complexes that include VE-cadherin, Raf-1 and Rok-α, and increases MLC2 phosphorylation. These functions are mediated by the PDZ-binding domain of efnB2. Acute downregulation of PS1 or inhibition of γ-secretase inhibits the angiogenic functions of EphB4 while absence of PS1 decreases the VE-cadherin angiogenic complexes of mouse brain. Our data reveal a mechanism by which PS1/γ-secretase regulates efnB2/EphB4 mediated angiogenesis.  相似文献   

15.
Angiogenesis and signal transduction in endothelial cells   总被引:11,自引:0,他引:11  
Endothelial cells receive multiple information from their environment that eventually leads them to progress along all the stages of the process of formation of new vessels. Angiogenic signals promote endothelial cell proliferation, increased resistance to apoptosis, changes in proteolytic balance, cytoskeletal reorganization, migration and, finally, differentiation and formation of a new vascular lumen. We aim to review herein the main signaling cascades that become activated in angiogenic endothelial cells as well as the opportunities of modulating angiogenesis through pharmacological interference with these signaling mechanisms. We will deal mainly with the mitogen-activated protein kinases pathway, which is very important in the transduction of proliferation signals; the phosphatidylinositol-3-kinase/protein kinase B signaling system, particularly essential for the survival of the angiogenic endothelium; the small GTPases involved in cytoskeletal reorganization and migration; and the kinases associated to focal adhesions which contribute to integrate the pathways from the two main sources of angiogenic signals, i.e. growth factors and the extracellular matrix.Received 13 February 2004; received after revision 25 March 2004; accepted 19 April 2004  相似文献   

16.
Cyclooxygenase,lipoxygenase and tumor angiogenesis   总被引:7,自引:0,他引:7  
Arachidonic acid metabolism through cyclooxygenase (COX) and lipoxygenase (LOX) pathways generates various biologically active lipids that play important roles in inflammation, thrombosis and tumor progression. Angiogenesis, the formation of new capillary vessels from preexisting ones, underpins a number of physiological processes and participates in the development of several pathological conditions such as arthritis, cancer and various eye diseases. The formation of new capillary vessels is a multistep process that involves endothelial cell proliferation, migration and tube formation. In the present review, we survey the literature on the regulation of angiogenesis by arachidonate metabolites, especially those from the COX and 12-LOX pathways in the context of tumor growth, and put forward some unanswered but important questions for future studies.  相似文献   

17.
Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.  相似文献   

18.
Previous studies have shown that progesterone inhibits endothelial cell proliferation through a nuclear receptor-mediated mechanism. Here, we further demonstrate that progesterone at physiologic levels (5 – 500 nM) dose- and time-dependently inhibited DNA synthesis of cultured human umbilical vein endothelial cells (HUVEC). The mRNA and protein levels of p21, p27, and p53 in HUVEC were increased by progesterone. The formation of CDK2-p21 and CDK2-p27 were increased and the CDK2 activity was decreased in the progesterone-treated HUVEC. The progesterone-inhibited [3H]thymidine incorporation was completely blocked when the expressions of p21 and p27 were knocked-down together. Transfection of HUVEC with dominant negative p53 cDNA prevented the progesterone-induced increases in p21 and p27 promoter activity and protein level, decreases in thymidine incorporation, and capillary-like tube formation. Matrigel angiogenesis assay in mice demonstrated the antiangiogenic effect of progesterone in vivo. These findings demonstrate for the first time that progesterone inhibited endothelial cell proliferation through a p53-dependent pathway. Received 28 July 2008; received after revision 25 September 2008; accepted 26 September 2008  相似文献   

19.
Syncytin is involved in breast cancer-endothelial cell fusions   总被引:2,自引:0,他引:2  
Cancer cells can fuse spontaneously with normal host cells, including endothelial cells, and such fusions may strongly modulate the biological behaviour of tumors. However, the underlying mechanisms are unknown. We now show that human breast cancer cell lines and 63 out of 165 (38%) breast cancer specimens express syncytin, an endogenous retroviral envelope protein, previously implicated in fusions between placental trophoblast cells. Additionally, endothelial and cancer cells are shown to express ASCT-2, a receptor for syncytin. Syncytin antisense treatment decreases syncytin expression and inhibits fusions between breast cancer cells and endothelial cells. Moreover, a syncytin inhibitory peptide also inhibits fusions between cancer and endothelial cells. These results are the first to show that syncytin is expressed by human cancer cells and is involved in cancer-endothelial cell fusions. Received 2 May 2006; received after revision 7 June 2006; accepted 12 June 2006  相似文献   

20.
Celiac disease is characterized by the presence of specific autoantibodies targeted against transglutaminase 2 (TG2) in untreated patients’ serum and at their production site in the small-bowel mucosa below the basement membrane and around the blood vessels. As these autoantibodies have biological activity in vitro, such as inhibition of angiogenesis, we studied if they might also modulate the endothelial barrier function. Our results show that celiac disease patient autoantibodies increase endothelial permeability for macromolecules, and enhance the binding of lymphocytes to the endothelium and their transendothelial migration when compared to control antibodies in an endothelial cell-based in vitro model. We also demonstrate that these effects are mediated by increased activities of TG2 and RhoA. Since the small bowel mucosal endothelium serves as a “gatekeeper” in inflammatory processes, the disease-specific autoantibodies targeted against TG2 could thus contribute to the pathogenic cascade of celiac disease by increasing blood vessel permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号