首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baskakov算子对有界变差函数的点态逼近   总被引:1,自引:0,他引:1  
设f(x)在[0,∞)的每一有限子区间上为有界变差函数,作用在f(x)上的Szasz—Mirakyan算子和Baskakov算子分别为:S,(f,x)=sum from k=0 to ∞ (f(k/n)e~(nx)((nx)~k)/kl),V_n(f,x)=sum from k=0 to ∞ (f(k/n)((n+k-1)/k))x~k/(1+x)~(n+k)) Fuhua Cheng借助Bojanic的方法得出了S_n(f,x)对f(x)的点态逼近度。本文在学习与参考[2]的基础上,更多地应用概率方法,来研究V_n(f,x)对f(x)的点态逼近度。在处理尾部时,我们得到了一个一般性的结果(文中的引理5),它不仅可以用来证明本文的定理1,而且也适用于其他算子,从而简化了[2]中的计算。  相似文献   

2.
I.總说 1.设:f(x)是以2π為周期的連续函数。记这种函数的全体为C_(2π)。下面所考慮的函数都屬於C_(2π)。將函数f(x)的Fejer積分和de la Vallee-Poussin積分以及Jackson积分分别记做 a_n(f,x)=1/nπ integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~2 dt, V_n(f,x)=1/2π(2n)!!/(2n-1)!! integral from n=-π to π f(t)cos~(2n) t-x/2 dt, J_n(f,x)=3/nπ(2n~2+1) integral from n=0 to π/2 [f(x+2t)+f(x-2t)](sin nt/sin t)~4 dt.  相似文献   

3.
对于БЕРНшТЕИН[1]提出的逼近连续周期函数的求和算子Un(f;x)=1/(2n+1) sum from k=0 to 2n f(x_k)〔sin2/2(x-x_k)/sin(x-x_k)/2 〕~2,HATAHCOH[2]证明了它的收敛性.至于误差估计,本文得到:1)若f∈C2π,则|Un(f;x)-f(x)|≤(5+3/2π)ω(f,lnn/n)(n≥3),2)若f∈C2π且f∈Lipiα(0<π<1),则|Un(f;x)-f(x)|≤〔7/4+3/(1-α)〕(2π/2n+1)~α,3)若f∈C2π且f∈Lipil,|Un(f;x)-f(x)|≤15·ln(2n+1)/2n+1。  相似文献   

4.
设f(x)∈L_p[0,2π](1≤p≤∞),下列事实是已知的:存在一个以2π为周期的连续函数,积分 integral from n=+0 to π(f(x+t)+f(x-t)-2f(x))/t dt (1)处处发散。本文的目的是讨论积分(1)收敛的充要条件。如同我们在[1,2]中讨论的方法一样,我们需要(L~*)求和法。定义设R是一个巴拿赫空间,以‖u‖表示R中元素u的模.设u=∑u_n是R中一个级数,称  相似文献   

5.
如果一元解析函数f(x)无f限阶可导,其Taylor级数展开式f(x)=f(0)+f'(0)x+f″(0)/2!x~2+…+f~((k))(0)/k!x~k+…=∞∑k=0f~((k))(0)/k!x~k.本文讨论将一元无限阶可导函数f(x)在区间[a,b]上的Riemann和式b-a/nn∑k=1f(a+k/n(b-a))展开成1/n的级数:b-a/nn∑k=1f(a+k/n(b-a))=A_0+A_1·1/n+A_2/2!·(1/n)~2+···+A_i/i!·(1/n)~i+···可以看到,这个展开式在形式上与函数的Taylor级数展开式非常相似.  相似文献   

6.
1.假如f(x)∈L[0,2π],且在[0,2π]的子区间[a,b]上是连续的,那末我们写着f(x)∈L[0,2π]·C[a,b], ω_2(f,δ;a,b)= sup |f(x+h)+f(x-h)-2f(x)|.关于这类函数的富里埃级数f(x)~a_0/2+sum form n=1 to ∞(1/n)(a_n COS nx+b_n sin nx),Flett,Sunouchi等作者讨论了蔡查罗局部逼近问题。本文的目的是在详尽地讨论这个局部逼近问题,指出局部性与整体性的差别,并且解决了局部饱和问题。我们建立两个定理。定理1.设f(x)∈L[0,2π],ω_2(f, δ;a,b)=O(δ~β),f(x)的富里埃系数a_n,b_n=O(n~(a-β)).则(i)当0<β<1时,在[α+2ε,b-2ε]中均匀地成立着σ_n~α(f;x)-f(x)=O(n~(-β));(ii)当β=1时,f′(x)在[a,b]中是有界的话,在[a+2ε,b-2ε」中均匀地成立着  相似文献   

7.
§1、设函数ω(t)(0≤t≤π)是连续模,用H[ω]_L表示满足条件 ‖f(x+t)-f(x)‖_L=integral from n=-π to π(|f(x+t)-f(x)|dx≤ω(t))的有周期2π的周期可积函数f(x)所成的函数类。又用S_n(x、f)表示f(x)的富里埃级数的开头几项和,σ_(n,p)(x,f)表示瓦雷—布然平均:  相似文献   

8.
(0,δM)三角插值多项式对函数及其导数的同时逼近   总被引:1,自引:0,他引:1  
证明了(0,δM)三角插值多项式L(M)n,ε (f,x)的s(s=0,1,2,…,q)阶导数一致收敛于函数f(x)的s(s=0,1,2,…q) 阶导数:设f(x)∈C2π,f(x)具有q阶连续导数,且f(q)(x)∈Lipα,0<α<1,若βk=O(|sinM(nh)|/nq+α)(k=0,1,2,…,n-1),则|[L(M)n,ε (f,x)](s)-f(s)(x)|=O(lnn/nq-s+α)(s=0,1,2,…,q).  相似文献   

9.
设f(x)是以2π为周期的周期连续函数; f(x)~a_0/2+sum from n=1 to ∞(a_n cosnx+b_n sinnx)。(1)设S_n(x)是这个富里埃级数的部分和,E_n(f)是f(x)的阶不高于n的最佳逼近。在一般情形,  相似文献   

10.
定理1.设定义在[1,∞)上的正值函数μ(x)满足下面的条件:(ⅰ)存在N_0>0,使得当x≥N_0时,函数x~2μ(x)是增加的;(ⅱ)存在常数c>1,使得对于一切x,有Aμ(x)≤μ(cx)≤Bμ(x),A>0,B>0。设f(x)∈L~p(0,2π),1p,则当积分integral from n=0 to 1 1/t~2μ(1/t)[integral from n=0 to 2x|f(x t)-f(x-t)|pdx]~(β/p)dt (1) 收敛时,下面的级数收敛: sum from n=1 to ∞μ(n)[sum from k=n to ∞ρ_k~p k~(p-2)]~(β/p),(ρ_k~2=a_k~2 b_k~2) (2) 定理2.设μ(t)是正值函数, Σμ(n)/n~β<∞(β>0),并且存在常数c>0,使得μ(cx)~μ(x),x→∞。令An=sum from k=n to ∞ρ_k~p k~(p-2)。若存在正数α<1,使得An·n~(p-α)当n≥N_0时是增加的,则由(2)的收敛性可以得出(1)的收敛性。  相似文献   

11.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

12.
Ⅰ.總說 1.1. 設C_(2π)是以2π為週期的連續函數的全體,下面所提到的f都是屬於C_(2π)。用t_n(x)表示n階的三角多項式,記||f||=max|f(x)|,E_n(f)=min||f-t_m||。 設Δ_h~k f(x)=syn frin i=0 to k(-1)~(k-i)(k i)f(x+ih), 稱ω_k(δ,f)=max||Δ_h~k f(x)||是函數f之K階的連續性模數。 對於區間(0,π)中的正值函數α(δ)与β(δ),假如有正數m和M使  相似文献   

13.
考虑了一类非可微的多目标分式规划问题:min (f1(x)+S(x|C1)/g1(x)-S(x|D1),…,fk(x)+S(x|Ck)/gk(x)-S(x|Dk)),s.t.hj(x)+S(x|Ej)≤0,j=1,…,m。对其建立了二阶和高阶对偶模型。在Suneja等人给出的弱对偶定理的基础上,利用Fritz John型必要条件,在没有约束品性条件下给出了二阶和高阶对偶问题的逆对偶定理。  相似文献   

14.
一个变分双曲型组的解   总被引:3,自引:0,他引:3  
本文研究带Dirichlet条件的边界值问题{□u+△G(u)=f(t,x),(t,x)∈Ω≡(0,π)×(0,π), (*)u(t,x)=0, (t,x)∈aΩ,的解的存在性,这里口是波算子a2/at2-a2/ax2,GRn→R是一连续函数.设σ(口)={k2-m2,k,m∈N}记波算子口的特征值的集合,(a2G(u)/auiaui)记u∈Rn.点处的Hessian阵.假定σ((a2G(u)/auiauj))∩σ(□)=φ.再设E={u|u(t,x)=∑k,mψkm(t,x)Ckm, Ckm ∈ Rn k,m ∈ N,∑k,m(k2+m2+1)|Ckm|2 <+∞},Y={y|y(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 - m2 <γi(u),μikm ∈ R,k,m ∈N,∑k,m(k2+m2+ 1)|μikm|2<+∞,i= 1,2,……,n} Z={z|z(t,x)=∑i,k,mμikmψkm(t,x)ei,k2 -m2>γi(u),μikm ∈ R,k,m ∈ N ,∑k,m(k2 + m2+1)|μikm|2 <+ ∞,i = 1,2,……,n}.对Y中的k2-m2记ξ(‖u‖0) =min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{γi(v)-(k2- m2) > 0},对Z中的k2-m2,记η(‖u‖0)=min‖v‖0≤‖u‖0 mink,m∈N min1≤i≤n{k2-m2-γi(v)>0},这里‖·‖0记(L2(Ω))n.假设∫+∞1ξ(s)ds=∞, ∫+∞1η(s)ds=∞.在上述条件下,我们使用R.F.Manasevich的最大值最小值定理证明问题(*)的弱解u0∈(H1(Ω))n的存在性和唯一性.  相似文献   

15.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

16.
首先证明,L~2[0,2π]中(f,g)=1/πintegral from n=0 to2πf(x)(?)dx,||f||=(1/πintegral from n=0 to2π|f(x)|~2)dx~(1/2),三角函数系F_1={1/2~(1/2),cosX,SinX,…,CosnX,SinnX,…}是完全就范直交系。证:设SpanF_1为形如sum from k=0 to n(a_kcoskx+b_ksinkx)的三角多项式的全体。C_(2π)为以2π为周期的连续函数的全体,则据Weiestrass逼近定理,对(?)ε>0,f∈2π,(?)T(x)=sum from k=0 to N(a_kcoskx+b_ksinkx)使(?)|f(x)-T(x)|<ε  相似文献   

17.
设f(x)∈Lp(Ωn),1≤p≤2,δ>(n-1)(1p-12),σδN(f)(x)表示f(x)在n维球面Ωn上的Cesàro平均.本文证得limN→∞1N+1∑Nk=0|σδk(f)(x)-f(x)|2ak=0 a.e.x∈Ωn.其中权系数ak≥0满足1≤1N+1n[]k=0ak≤A(A是一个绝对常数).  相似文献   

18.
用一个单调函数ω(t) 为中介,利用Szasz-Durrmeyer算子导数的性质以及该算子的可换性和光滑模ωφλ(f,t)为特点,得到以下点态逼近逆定理对于f∈C[0,+∞),0≤λ≤1,φ(x)=x,δn(x)=φ(x)+1/n, 若|f(x)-Sn(f,x)|≤Mω(n-1/2δ1-λn(x)),其中ω(t)≥0, ω(ut)≤C(u2+1)ω(t),则对任意t>0,有ω2φλ(f,t)≤Ct2∑0<n≤t-1(n+1)ω(n-1)+Ct2‖f‖,ω1(f,t)≤Ct∑0<n≤t-1ω(n-(2-λ)/(2))+Ct‖f‖.此结果推广了有关ωφ(f,t)和ω(f,t)的结果.  相似文献   

19.
借助于优超理论,在适当的假设下建立了如下的Jensen-Pe(c)ari(c)-Svrtan型不等式f(A(x))/f(A(φx))=fn,n(x)/fn,n(φx)≤(≥)...≤(≥)fk+1,n(x)/fk+1,n(φx)≤(≥)fk,n(x)/fk,n(φx)≤(≥)...≤(≥)f1,n(x)/f1,n(φx)=A(f(x))/A(f(φx)),这里,A(·)表示算术平均,φ:[a,b]→R, f:[a,maxt∈[a,b]{φ(t)}]→R, fk,n(x):=1/(nk)∑1≤i1<...<ik≤nf(xi1+xi2+...+xik/k), x∈[a,b]n.  相似文献   

20.
设S_n(0)是连公式K(a_n/1)的第n阶渐进分式,S_n(0)→f,f是有限值。如果S_n(w_n)的计算量比S_n(0)的计算量大得多,我们就必须证明|S_n(w_n)-f|/|S_(n+k(n)(0)-f|→0,k(n)∈N∪{0}。根据这种计算的实际需要,并利用Aitken△~2—过程,我们得到了连公式K(a_n/1)加速收敛的一个新的结果,其中a_n→0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号