共查询到15条相似文献,搜索用时 48 毫秒
1.
关于m次剩余数与无k次幂因子数的混合均值 总被引:1,自引:0,他引:1
张天平 《黑龙江大学自然科学学报》2003,20(4):11-14
对于给定的自然数m,k≥2及任意自然数n,利用m次剩余数am(n)与无k次幂因子数ck(n)定义数论函数am(n)ck(n),研究这个新的函数的渐近性质,利用解析方法得到这个函数的几个渐近公式。 相似文献
2.
3.
设n为正整数,F.Smarandache LCM函数SL(n)和函数SM(n)定义为:SL(1)=1,SM(1)=1,当n>1,并且n的标准分解式为n=p1α1p2α2…pkαk时,SL(n)=max1≤i≤k{pαi i},SM(n)=max1≤i≤k{αi.pi},利用初等方法及素数的分布性质研究函数(SL(n)-SM(n))2的均值性质,并给出了一个有趣的渐近公式。 相似文献
4.
引进了两个新的可乘函数U(n)和V(n),利用解析方法研究了∑n∈An≤xU(n)及∑n∈An≤xV(n)的均值分布性质,给出了两个较强的渐近公式,其中A表示所有无k+1次幂因子数组成的集合。所得结果表明这两个可乘函数具有较好的渐近分布性质。 相似文献
5.
本文利用特征和估计,L-函数的均值及其解析方法研究了L-函数的四次加权均值,得到一个加权均值分布的渐近公式. 相似文献
6.
对任意的非负整数n,著名的Smarandache LCM函数SL(n)定义为最小的正整数k,使得n/[1,2,…,k],其中n/[1,2,…,k]表示1,2,…,k的最小公倍数.而函数U(n)定义为最小的正整数k,使得n≤k(2k-1),即U(n)=min{k∶n≤k(2k-1),k∈N}.通过利用初等和解析方法,研究复合函数SL(U(n))的均值,得到了一个有趣的渐近公式. 相似文献
7.
对任意正整数n,k≥2为给定整数,Smarandache Ceil函数sk(n)定义为最小的正整数x,使得n|xk,即Sk(n)=min{x∶x∈N,n|xk}.利用Smarandache Ceil函数的定义及解析的方法,研究Smarandache Cei函数sk(n)与欧拉函数的均值分布性质,并给出一个有趣的渐近公式. 相似文献
8.
关于正整数n的k次幂部分数列加权均值 总被引:1,自引:1,他引:1
利用欧拉公式、阿贝尔恒等式及解析的方法研究了正整数n的k次幂部分数列,从而得出几个较为精确的渐近公式.所得结果是对文献[6~8]的改进与推广. 相似文献
9.
设n为任意正整数,Ak(n)为n的k次幂补数。利用初等数论和解析方法研究k次补数Ak(n)函数与m次补数Am(n)函数复合函数Am(Ak(n))的复合均值问题,给出两个有趣的渐近公式。 相似文献
10.
杨衍婷 《黑龙江大学自然科学学报》2008,25(3):340-342,346
对任意正整数n,定义一个与著名的F.Smarandache函数的对偶函数密切相关的数论函数S**(n)如下:!!|n}, 如果n为偶数;**(n)=max{2m:m∈N*,(2m)s!!|n}, 如果n为奇数.*,(2m-1)max{(2m-1):m∈N利用初等方法,运用关于In([x]!)的渐近公式和sinnx的定积分与n!!的关系以及一些特殊幂级数收敛的性质,通过对正整数n按奇偶性分类讨论,研究了函数S**(n)的均值性质,并给出一个较强的渐近公式:对任意实数x>1,有∑S**(n)=x·(2e1/2-3 2e1/2∫01e-y2/2dy) 0(1n2x),其中e=2.718 281 828 459…为常数. 相似文献
11.
12.
李颖 《湘潭大学自然科学学报》1999,21(4):125-129
证明了经典意义下的复中值定理仅对线性函数和二次多项式成立,也就是说,如果中值定理对整函数f 成立,则f 是常数、一次或二次多项式。 相似文献
14.
K次方根序列的均值渐近公式 总被引:8,自引:0,他引:8
利用初等方法和解析方法,研究了K方根序列函数的性质,获得了K次方根系列均值性质及渐进公式;发展了F.Smarandache教授在OnlyProblems,NotSolutions一书中第80个问题的研究工作. 相似文献