共查询到20条相似文献,搜索用时 0 毫秒
1.
强化催化铁炭内电解处理高质量浓度焦化废水 总被引:3,自引:0,他引:3
针对焦化废水污染物质量浓度高、成分复杂、可生化性差的特点,采用催化铁炭内电解(同时曝气进行强化)对高质量浓度焦化废水进行预处理试验,考察pH值、反应时间、铁炭体积比等因素对处理效果的影响,并通过正交试验确定催化铁炭内电解处理焦化废水的最佳条件,对反应机理作初步的探讨.试验结果表明,当进水COD在3 200~3 500 mg/L之间,pH值约为3,铁炭体积比1∶1,反应时间90 min时,COD、酚、硫化物、色度和NH3-N的去除率分别为66%,75%,73%,80%和34%,ρ(BOD5)/ρ(COD)由处理前的0.25提高到0.52,大大提高了废水的可生化性. 相似文献
2.
通过改变初始pH值、曝气搅拌时间、混凝pH值和铁碳比等条件,研究了铁碳内电解对电镀废水的处理效果。试验结果表明:当原水初始pH值为3.0,曝气搅拌时间为45min,混凝pH值为8.5,铁碳比为1:1时,电镀废水中色度平均去除率达90%以上,化学需氧量(COD)去除率最高可达41%。 相似文献
3.
阿奇霉素废水成分复杂,具有pH值高、色度深、COD高、BOD低、难降解的特点,采用铁炭微电解技术对阿奇霉素废水进行预处理,研究了各因素对其处理效果的影响。结果表明:在反应温度为25℃、铁炭质量比为3∶1、入水pH值为4、铁屑投加量为0.45g/L、反应时间为2.0h的条件下,COD的平均去除率达到53.21%。 相似文献
4.
铁屑/炭反应器-混凝沉淀处理电镀废水 总被引:3,自引:0,他引:3
采用铁屑/炭反应器-混凝沉淀工艺处理某电镀厂规模为4m^3/h的电镀混合废水,研究了反应器机理和工艺条件,废水经处理后,总Cr及Cr^6+去除率达99%以上,其他重金属去除率达95%以上,处理水水质达到《污水综合排放标准》9GB8978-96)中的一级标准,无二次污染。该工艺与传统的化学法相比,具有工艺简单、占地少、投资及处理费用低、泥渣量少、操作方便的优点。 相似文献
5.
以铁粉、活性炭和粘土为主要组分,制得新型规整化球型铁炭填料.采用响应面法通过建立出水CODCr与各因素之间的Box-Behnken数学模型,对新型规整化球型铁炭填料处理制浆废水工艺进行优化,并采用UV、FTIR、GC-MS分别对在最优条件下微电解处理的蔗渣制浆废水进行表征分析.结果表明:在最佳实验条件(初始pH=2. 37、填料添加量为32. 67 g/L、反应时间为92. 49 min、曝气流量为0. 3 m~3/h)下,CODCr去除率可达69. 23%,新型规整化球型铁碳填料对废水中的共轭双键、羰基具有较好的降解效果,对芳香族类有机物具有良好的去除和转化能力. 相似文献
6.
铁碳微电解处理印染废水的研究 总被引:1,自引:0,他引:1
采用铁碳微电解法对金橙G模拟印染废水进行预处理,研究影响铁碳微电解处理废水的各种因素.实验探讨溶液浓度、初始pH值、铁碳比及反应时间对废水COD(化学需氧量)及色度去除率的影响,以确定最佳工艺条件.结果表明:铁碳微电解法预处理染料废水的最佳初始pH值为2,最佳铁碳比1 ∶ 1,适宜的反应时间为60 min,此时,COD... 相似文献
7.
《广西大学学报(自然科学版)》2017,(5)
针对毒性大、污染严重的含砷废水,采用铁粉和活性炭为原料,加入一定的粘合剂制备铁炭复合材料,然后在复合材料中掺杂二氧化铈(Ce O2)制备了新型铁炭复合材料,研究考察了制备过程中铁炭质量比、二氧化铈质量分数、焙烧温度等3个因素对材料吸附As(Ⅲ)性能的影响,并对吸附过程进行了动力学研究。结果表明,稀土掺杂铁炭复合材料对废水中的As(Ⅲ)具有显著的吸附效果。在铁炭质量比为1∶1、二氧化铈质量分数为3%、焙烧温度为600℃的条件下所制得的稀土掺杂铁炭复合材料对于含As(Ⅲ)浓度为10 mg/L的废水除砷率高达93.39%。动力学研究表明,复合材料对于含As(Ⅲ)浓度为10~30 mg/L的废水具有良好的吸附效果,平衡吸附容量最高可达3.890 mg/g,吸附规律符合Lagergren一级动力学方程和颗粒内扩散模型,吸附过程主要受颗粒内扩散的控制。 相似文献
8.
电解-内电解复合处理印染废水的试验研究 总被引:3,自引:0,他引:3
采用电解法和内电解法复合处理了高浓度和高色度印染废水,结果表明在达到同种处理效果的情况下,复合法比两种方法单独使用可节约时间和电能、提高效率.证明是一种高效价廉、值得推广的印染废水处理方法. 相似文献
9.
微电解—微生物法组合工艺处理含铬电镀废水 总被引:4,自引:1,他引:4
针对单一生物法净化含铬电镀废水存在着效率低、处理成本高的问题,采用一种新的组合工艺—微电解—生物法来处理含铬电镀废水.在实验过程中,重金属离子通过微电解法去除90%以上,剩余部分被后续工艺的微生物功能菌去除.实验结果表明:Cr^6 含量为50mg/L,Cu^2 含量为15mg/L,Ni^2 含量为10mg/L的废水经处理后,重金属离子的净化率达99.9%,且无二次污染. 相似文献
10.
11.
曝气铁碳内电解法处理垃圾渗滤液工艺研究 总被引:1,自引:0,他引:1
探讨了垃圾渗滤液的曝气铁碳内电解处理工艺。结果表明,曝气铁碳内电解工艺能显著提高垃圾渗滤液CODCr和色度的去除率,CODCr的平均去除率达到50%~80%,优于传统非曝气的工艺,色度的去除由于絮凝程度的提高也得到了增强。垃圾渗滤液经过曝气铁碳内电解处理后,pH值和氨氮变化均不大。 相似文献
12.
内电解强化处理腈纶废水的试验研究 总被引:27,自引:0,他引:27
采用铁屑内电解工艺强化预处理腈纶化工废水,实验室及现场试验结果均表明,该工艺能改善废水的可生化性,可提高废水ρ(CODCr)的去除率,该工艺与采用药剂混凝反应作预处理的生化工艺相比,废水ρ(CODCr)去除率提高了30.4%,具有投资省、运行费用低和效果好等优点。 相似文献
13.
14.
以6硝(6硝基1,2重氮氧基萘4磺酸)生产过程中产生的1,2,4酸废水作为研究对象,将铁/炭微电解和Fenton氧化技术结合进行废水处理,研究了微电解的pH值、反应时间、反应温度、铁炭质量比、活性炭用量的影响以及Fenton氧化的pH值和H2O2用量,并进行了处理工艺的经济性分析。通过单因素实验确定1,2,4酸废水处理的工艺条件为铁碳微电解的pH值为1时,铁碳质量比为3〖DK〗∶1,反应3 h,过滤,调pH值为3,添加废水体积2.5%的H2O2(质量分数为30%),反应1 h,电石渣调pH值7~8,过滤。该工艺对废水COD的去除率可提高到95%以上,废水处理成本5.4元/m3。 相似文献
15.
电解还原法处理含铬废水 总被引:16,自引:0,他引:16
采用电解还原方法模拟工业含铬废水的处理。试验以普通铁极板作阴阳极,在直流电的作用下,铁阳极溶解生成的Fe2 和硫酸亚铁中的Fe2 把废水中的六价铬离子还原成三价铬离子;随着氢离子阴极放电使废水pH值逐渐升高,Cr3 和Fe3 便形成氢氧化铬及氢氧化铁沉淀,同时氢氧化铁有凝聚作用,能促进氢氧化铬的迅速沉淀。在实验最佳条件下,废水初始含铬浓度在600mg/L及600mg/L以下、反应pH=3、加入FeSO4的量1.20g(Fe2 与Cr2O72 比例1∶1)、反应时间40min、换极周期10min、电流密度0.085A/cm2,出水浓度达到0.57mg/L,去除率为94%。出水浓度达到国家排放标准。 相似文献
16.
吕星浩 《吉首大学学报(自然科学版)》2015,36(3):73-76
以电解锌厂生产废水为研究对象,用铸铁屑和活性炭的混合材料组成铁碳微电解反应器,考察了处理时间、pH值、溶解氧浓度、铁碳加入量对废水中镉、锌、铅3种重金属离子去除率的影响.结果表明,在进水pH值3~5、废水停留时间30min、溶解氧5mg/L、铁碳添加量为50g/L条件下,废水中镉、锌、铅3种重金属离子的去除率分别为96.5%,9 1.1%,72.6%. 相似文献
17.
化学沉淀法处理电镀含铬废水 总被引:2,自引:0,他引:2
介绍在化学还原法常用处理电镀含铬污水的工艺基础上,用双反应池代替单反应池化学还原法处理含铬电镀污水,使用DTCR系列絮凝剂进一步调节Cr(OH)3沉淀废水,获得了处理含铬电镀废水的最佳工艺参数。 相似文献
18.
龙飞 《南阳理工学院学报》2012,4(6)
本文通过微电解-水解酸化/接触氧化工艺来处理染料的化工废水;结果显示通过微电解的方法能够很好地除去废水中的悬浮性有机物,而且去除率达到73%~81%;其去除效果与pH值有关,在pH值1.6 ~3.0范围内,越小的pH值将会有更好的效果;并且通过水解酸化与微电解的处理方式,能够很好地改善废水的可生化性,平均可以从0.23上升到0.45. 相似文献
19.
20.
《沈阳建筑大学学报(自然科学版)》2014,(5)
目的研究铁碳微电解对采油废水进行预处理的影响因素及各个因素的主次关系.方法调节采油废水pH值为酸性,向采油废水中投加经过活化处理的铁屑和吸附饱和的碳粉,曝气反应一段时间;在去除铁屑和碳粉之后,再将pH值调节为碱性,搅拌后静置40 min,取上清液进行检测分析.通过正交试验和单因素试验确定pH值、反应时间、铁碳质量比和铁投加量对COD去除率的影响.结果通过正交试验得出铁碳微电解预处理采油废水的影响因素顺序为:pH值铁投加量反应时间铁碳质量比;在最佳条件pH为4,铁投加量为0.167 g·mL-1,反应时间为30 min,铁碳质量比为3:1时,COD去除率可以达到54.3%.结论采用铁屑和碳粉对采油废水进行微电解可以取得良好的处理效果,其中pH值和铁投加量对COD去除率有较大影响. 相似文献