首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
微分中值定理与积分中值定理的逆定理   总被引:4,自引:0,他引:4  
给出并论证了微分中值定理(Lagrange中值定理和Cauchy中值定理)及积分第一、第二中值定理在某种条件下的逆定理。  相似文献   

2.
苑静  余丹  何书松 《科技信息》2012,(26):148-148
本文首先证明了定积分第一中值定理,接着利用定积分第一中值定理给出了积分中值定理的证明。  相似文献   

3.
以微积分基本定理为桥梁,利用实变函数论中的一些重要结果与函数逼近论中的Weierstrass第一定理及其Bernstein证明,在条件减弱的情形下,获得了比通常的积分第一中值定理更强的结论,且试图揭示积分第一中值定理与微分中值定理间深刻的联系.  相似文献   

4.
积分中值定理的推广及其应用   总被引:2,自引:0,他引:2  
本文将积分中值定理推广曲线积分和典面积分上,得到了相应的曲线积分和曲面积分的中值定理,并给出了证明,最后列举了应用。  相似文献   

5.
本文在分析教材中第一积分中值定理的条件下,证明了介值点ξ必可在开区间(a,b)内取得,进一步将这个结论推广到被积函数f以区间端点a和b为第一类间断点或瑕点以及在(a,b)内有间断点的情形,并且给出了一些应用。  相似文献   

6.
关于积分第一中值定理   总被引:1,自引:1,他引:0  
  相似文献   

7.
微积分第一基本定理和积分中值定理的新证法   总被引:2,自引:0,他引:2  
首先用Newton-Leibniz公式证明了微积分第一基本定理,然后又将变上限积分函数Ф(x)=∫a^xf(t)dt,在[a,b]上应用Lagrange中值定理,证明了积分中值定理,变证明了积分中值定理的中间点与徽分中值定趣的中间点是相一致的,从而可使微积分教学更加灵活。  相似文献   

8.
文[1],[2]研究了积分中值定理和推广的积分中值定理中值的渐近性,文[3]关于推广的积分中值定理中值的渐适性较文[1],[2]更为一般、文[4]则将文[1],[2]中的结论推广到第二积分中值定理.本文则得到了比文[4]更一般的结论.  相似文献   

9.
10.
积分中值定理的逆   总被引:1,自引:1,他引:0  
从积分中值定理的几何意义出发 ,探讨出有关积分中值定理的逆 ,并进一步推出微分中值定理的逆  相似文献   

11.
12.
本文给出了积分第一中值定理的两种叙述方式及其应用的两上例子。  相似文献   

13.
本文对广义积分中值定理与积分中值定理“中间点”的渐近性问题进行了进一步探讨,基本上解决了这两个中值定理“中间点”渐近性的问题。  相似文献   

14.
本文对积分中值定理中的值中ξ的渐近性进行了深入研究,得出了更一般的结果。  相似文献   

15.
石桃  华佳林 《科技资讯》2011,(30):175-175,177
本文讨论了积分第二中值定理的证明方法,以及定理中"中值点"的区间给予了改进,给出了第二中值定理的一些推广形式与其证明方法。总结了中值定理在各个方面应用。  相似文献   

16.
本文利用了数学分析中的Riemann积分第二中值定理和Lebesgue积分控制收敛定理,给出了Lebesgue积分第二中值定理及其证明,并将其推广到关于单调递增的连续函数α(x)的L—S积分上。  相似文献   

17.
积分中值定理的推广   总被引:7,自引:0,他引:7  
将Riemann积分中值定理中函数f(x)所满足的条件加以改进,得到如下积分中值定理:若函数f(x)是闭区间[α,b]上有原函数的可积函数,函数g(x)在[α,b]上可积且不变号,则存在ζ∈(α,b),使得∫α^b(x)g(x)dx=f(ζ)∫α^bg(x)dx。√a。a  相似文献   

18.
本文给出了曲线积分的中值公式,为解决有关问题提供新途径.  相似文献   

19.
关于积分第一中值定理的一个注记李莹万重杰1、引言积分第一中值定理:若f(x)是[a,b]上的连续函数,则在[a,b]中存在一点ξ使∫baf(x)dx=f′(ξ)(b-a)上述定理是高等数学中的一个重要定理,具有广泛的应用。大多数高等数学教科书中只给出...  相似文献   

20.
文章从积分中值定理的几何特征出发,对该定理作了一点补充说明,并通过实例进一步验证了这种改进的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号