首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
卟啉化合物的反饱和吸收与三阶非线性光学效应   总被引:5,自引:2,他引:3  
费浩生 《科学通报》1991,36(13):994-994
许多有机化合物当它在强光作用下其吸收系数将随入射光强的增加而减小,称作饱和吸收。这类现象已有许多学者进行过研究,人们注意到这类饱和吸收介质具有大的三阶非线性光学效应。但是对另一类介质,其吸收系数随着入射光强的增加而增加称作反饱和吸收的现象,却研究得很少。最近,Lee等人报告了在某些有机金属化合物中存在着反饱和吸收现象,并指出它可以作为光学限幅器。我们则在卟啉化合物中也观察到这种反饱和吸收现象,并显示出具有大的三阶非线性光学效应。  相似文献   

2.
氧化亚铜纳米微粒的制备及光学特性   总被引:5,自引:0,他引:5  
邹炳锁 《科学通报》1993,38(18):1649-1649
半导体纳米微粒由于量子限域效应(Quantum confinement effect)而产生一系列新现象,其中超快速的光学非线性响应倍受注目,预期它将成为未来光电子学应用的基础材料.研究纳米微粒光吸收及弛豫性质,有助于我们深入探讨其光学非线性的响应机制.当半导体微粒尺寸小到位于其体相的激子玻尔半径 a_B 的尺度时,可以观察到一系列的电子态与光学性质的变化,这样的例子有 CdS,CuCl,CdSe,PbS 等半导体微晶体系,  相似文献   

3.
含偶氮苯侧基聚酯膜的光学相位共轭特性   总被引:2,自引:0,他引:2  
颜星中   《科学通报》1996,41(6):505-509
光学相位共轭(OPC)是一种采用非线性光学效应使光波场对时间进行精确反演的技术,可应用于实时适应光学、实时全息、光计算、光刻和非线性光谱学等领域。在三阶非线性光学过程中一般用简并四波混频(DFWM)来产生,这要求介质具有较大的三阶非线性光学系数。一些有机染料分子因饱和吸收和较长寿命的光诱致中间过渡态,在固溶体或溶液中往往能表现出很高的三阶非线性系数,可满足低功率激光在DFWM中产生OPC的要求。例如偶氮苯染料和液晶染料等。因此,近年来以染料掺杂的聚合物薄膜的OPC特性的研究已引起关注。  相似文献   

4.
卢德新 《科学通报》1994,39(13):1177-1177
由于铁电薄膜具有一系列的特殊性质,如铁电开关特性、压电效应、热释电效应、电光和声光效应、非线性光学效应等,因而在微电子学及光电子学领域中得到了广泛的应用,特别是以铁电薄膜为基础的铁电随机存取存储器的开发成功,显示出了高速度、高密度、非挥发性及抗辐射性等优良性能,更进一步促进了对铁电薄膜的研究.同时,由于薄膜制备技术的发展,  相似文献   

5.
偶极增强的金属氧化物超微粒的三阶非线性光学特性   总被引:1,自引:0,他引:1  
费浩生 《科学通报》1992,37(13):1177-1177
由于全光学信息处理、光计算机和光学位相共轭等实际应用的需要,近年来对发展具有大的三阶非线性光学系数和快速响应的非线性光学材料受到人们的重视。最近,对半导体微晶(例如掺CdS_xSe_(t-x)玻璃)的三阶非线性光学特性进行了广泛的研究,人们也注意到PbS和CdS微粒溶胶同样具有较强的非线性光学特性。由于这类超微粒材料具有相对大的表面积,因此微粒的介电环境以及表面化学特性对其非线性光学特性将有很大的影响。  相似文献   

6.
以C_(60),C_(70)为代表的富勒烯材料,自Kr(?)tschmer等人发现其有效制备方法之后,已成为材料科学研究的热点之一,被认为在半导体、超导体、有机导体、非线性光学、金刚石薄膜合成、有机化学、医药、润滑等方面有着巨大的潜在应用价值.尤其是作为一种新型光学材料而倍受人们关注.C_(60)由于具有共轭大π电子云体系而表现出强烈的三阶非线性光学效应,使其有可能成为十分有前途的非线性光学材料,而其反饱和吸收特性则使其可以制成光限幅器件、光双稳器件和全光学开关等.本文研究了沉积于粗糙介质表面C_(60)薄膜的波导Raman散射(waveguide Raman scattering).波导Raman散射是结合集成光学和Raman散射的一种测试介质上薄膜性能的灵敏方法,文献[4]报道了C_(60)薄膜的波导Raman散射现象,但是用的光源为100mW的Ar~+激光.然而,这种较强的激光有可能破坏C_(60)膜中的分子结构诸如发生聚合反应等,从而影响其本征的Raman谱.本文报道了采用30mW的He-Ne激光为激发光源,观察到粗糙介质表面C_(60)薄膜的波导Raman散射增强效应.  相似文献   

7.
聚苯胺溶液的非线性光学效应的研究   总被引:3,自引:0,他引:3  
万梅香 《科学通报》1993,38(4):330-330
由于导电聚合物具有快速响应(10~(-13)s)和非常大的三阶非线性光学系数(10~(-9)-10~(-12)esu)以及它在快速的光开关、非线性记忆元件和光学晶体管等方面的应用前景。因而,最近几年对导电聚合物的三阶非线性光学效应的研究非常活跃。聚苯胺(PANI)由于它独特的掺杂机制,优异的物理化学特性、良好的稳定性以及诱人的应用前景使它成为当今导电聚合物的研究热点。关于PANI及其衍生物的非线性光学效应已有一些报道,我们也研究了聚苯胺膜的三阶非线性光学效应。但是,对其非线性光学  相似文献   

8.
吴建耀 《科学通报》1995,40(21):2007-2007
近年来,一些共轭有机聚合物由于具有大的非线性光学性能和快的时间响应而受到了极大的重视.人们期望用它来制备出具有超快特性的光开关、光计算等光子学方面的器件.但是,迄今为止,所研究的有机聚合物的非线性光学系数或时间响应速度还不能满足实际应用的要求.本文报道了有机聚合物:聚(2,5-二丁氧基)苯撑(简称PPP)在激发态时的非线性光学性能的增强,并且得到了超快时间响应的实验结果.据我们所知,这是首次在聚合物材料中观察到激发态非线性光学增强.实验采用双波耦合和紫外光激发的方法对有机聚合物PPP进行了激发态非线性光学效应增强的研究.在PPP材料中发现了三阶非线性光学性能  相似文献   

9.
杨国伟  袁放成 《科学通报》1996,41(14):1273-1274
<正>以C60,C70为代表的富勒烯材料,自Kr(?)tschmer等人发现其有效制备方法之后,已成为材料科学研究的热点之一,被认为在半导体、超导体、有机导体、非线性光学、金刚石薄膜合成、有机化学、医药、润滑等方面有着巨大的潜在应用价值.尤其是作为一种新型光学材料而倍受人们关注.C60由于具有共轭大π电子云体系而表现出强烈的三阶非线性光学效应,使其有可能成为十分有前途的非线性光学材料,而其反饱和吸收特性则使其可以制成光限幅器件、光双稳器件和全光学开关等.本文研究了沉积于粗糙介质表面C60薄膜的波导Raman散射(waveguide Raman scattering).波导Raman散射是结合集成光学和Raman散射的一种测试介质上薄膜性能的灵敏方法,文献[4]报道了C60薄膜的波导Raman散射现象,但是用的光源为100mW的Ar+激光.然而,这种较强的激光有可能破坏C60膜中的分子结构诸如发生聚合反应等,从而影响其本征的Raman谱.本文报道了采用30mW的He-Ne激光为激发光源,观察到粗糙介质表面C60薄膜的波导Raman散射增强效应.  相似文献   

10.
飞秒激光脉冲具有极高的峰值功率和极短的脉冲宽度,与物质相互作用时呈现出强烈的非线性效应,使其可以深入透明介质内部,以超越光学衍射极限的精度对材料进行三维微加工.除此之外,飞秒激光三维直写技术具有高度的灵活性,即可以在单一芯片上制备并集成多种不同功能的微纳结构.这些特性使该技术迅速发展成为微制造领域的研究热点,在微流体、微光学、光电子学以及光量子芯片制备与集成等领域表现出广阔的前景.但还有一些问题限制飞秒激光直写技术的进一步发展,比如加工通道的尺寸和长度限制、较高的加工表面粗糙度等.针对这些问题,本文重点介绍了在玻璃中制备三维微纳流体通道以及高品质光学微腔的最新进展.  相似文献   

11.
吴存恺 《科学通报》1986,31(5):393-393
引言 用简并的四波混频技术可以方便地测量透明介质的三阶非线性光学极化率。对于处于基态状态下的介质,其非线性特性是比较清楚的,然而,人们对处于激发态的介质的非线性光学特性了解得很少。当介质对入射光波有吸收时,有一部分粒子被激发到高能态,在简并的四波混频中,常常利用这种共振增强效应来增大三阶非线性光学极化率,但此时只是研究在激发  相似文献   

12.
富勒烯内嵌金属复合物是当前富勒烯科学研究的热点.从激光质谱中首次被检测至今10年间,这一领域的研究取得了可喜的进展.采用电弧法已经合成了多种金属富勒烯,其后续的纯化、表征及衍生研究也得以广泛开展.在此基础上,人们开始把注意力更多地集中到有关富勒烯球笼内嵌金属的存在状态以及金属富勒烯的应用上来.在15种稀土元素中,铽(Tb)是非常有研究价值的一种.一方面,铽具有可变价态,作为金属富勒烯的合成起始反应物Tb_4O_7,就是具有 4和 3两种价态氧化物的混合物,Tb_4O_7经过放电形成的Tb@C_(2n)中Tb的存在状态直接反映了富勒烯球笼的电负性以及金属富勒烯的电子结构;另一方面,含铽化合物通常具有良好的光学性能,是优良的稀土发光材料.含铽稀土富勒烯的光学性能研究是金属富勒烯能否作为新型光学材料而得以广泛应用的基础.本文采用二次电弧法、吡啶高温高压提取法高效合成、提取了含铽金属富勒烯,通过激光解吸飞行时间质谱确定了Tb@C_(2n)的生成,采用光电子能谱和荧光光谱对铽在富勒烯笼内的存在状态以及含铽金属富勒烯的荧光性能进行了研究.  相似文献   

13.
纳米微粒SnO2的光限幅特性   总被引:2,自引:0,他引:2  
随着高灵敏快响应光电探测器的广泛应用,迫切需要研制一些光限幅器来保护这些精密仪器。光限幅器的工作原理是基于材料的非线性光学特性,因而选择合适材料并研究它的非线性光学响应是非线性光学中非常重要的课题。纳米微粒有相对大的比表面积,在微粒表面存在大量原子空位或缺陷,形成表面受陷态(trapped states)。在外界激光作用下,这些表面受陷态成为有效光生载流子的无辐射途径,导致大的热致折射率变化,形成瞬态热透镜。这个热透镜使信号光束出现扩散或会聚,通过选择样品相对位置,从而实现光束限幅效应。近年来,利用非线性光学原理的光限幅效应研究已有一些报道,大多采用的是有机非线性材料和体相半导体材料,但存在着材料稳定性差及限制效果不太理想等局限性。利用单光束Z-扫描技术,本文进行了表面修饰的SnO_2纳米微粒热致折射率n_2测量和它的光限幅特性研究。  相似文献   

14.
傅恩生 《科学通报》1995,40(10):875-875
自由电子激光器具有波长可大范围调谐、光束质量好和超短脉冲结构等优点,在生物科学、医学、材料科学和非线性光学等领域有广阔的应用前景.由于北京自由电子激光器的成功运转,使我国成为继美国、荷兰、法国之后,又一个利用射频直线加速器获得红外自由电子激光的国家.1994年初北京自由电子激光器实现了饱和振荡,输出激光束的质量达到了衍射极限,在这目前世界上已建造的十多台同种类型装置中处于领先水平.  相似文献   

15.
发展新型的光子开关在光计算和光通讯领域里具有重要的意义.团簇——作为空间尺度,是零点几到几十纳米的原子或分子的微观和亚微观聚集体显示出与通常固体材料不同的电子和光学性质.目前,无机纳米材料大的三阶非线性光学效应已引起了国内外的重视,深入的研究可望将团簇开发成一类具有特殊性能的非线性光学材料.本文报道一种嵌埋于有机玻璃(PMMA)中的聚苯胺(PAn)团簇的飞秒非线性光学特性.采用飞秒瞬态吸收激光光谱技术分别测量了近共振和非共振条件下的PAn团簇的光激发和弛豫过程,测量结果显示出PAn团簇的量子尺寸效应导致了其具有比纯聚苯胺固体薄膜更快的光学响应过程.  相似文献   

16.
龚旗煌  胡小永  杨宏  王树峰 《科学通报》2010,55(15):1419-1425
20世纪,基于非线性光学二阶效应,包括线性电光效应、二倍频等的光电信息发展对人类社会发展和生活方式起到了革命性的改变.随着光信息技术的迅速发展,需要呼唤新的非线性光学原理和方法.基于非线性光学三阶效应的新应用则成为这一研究的重点基础.本文首先回顾非线性光学研究和应用状况,介绍作者研究小组在三阶非线性光学材料研究的工作,特别重点介绍近期基于分子间电荷转移过程增强超快三阶非线性光学响应新机理实现的超快、低泵浦功率的香豆素/聚苯乙烯复合材料有机光子晶体全光开光的工作。  相似文献   

17.
近年来,部分相干光束由于其独特的光学特性和丰富的物理内涵而受到广泛关注.部分相干光束在许多应用领域具有独特的优势,不同的应用对其光束特性具有不同的需求,因此需要对部分相干光束进行调控.本文介绍部分相干光束位相调控及应用基础研究进展,着重阐述携带涡旋位相以及扭曲位相部分相干光束理论模型、实验产生、光学特性以及相关应用基础.研究表明位相调控对部分相干光束传输特性起到重要调制作用,在光束整形、微粒俘获、大气激光通信、光学成像以及非线性光学等领域具有重要的应用前景.  相似文献   

18.
光学孤子与孤子激光器   总被引:4,自引:0,他引:4  
刘颂豪 《科学通报》1992,37(3):193-193
所谓“光学孤子”(optical solitons),是指光纤中传输的,满足一定条件的非线性光波波包脉冲。与KdY方程描述的浅水孤子波不太相同,光学孤子属于一般称为波包孤子的一类。 光学孤子由非线性Schrdinger(NLS)方程  相似文献   

19.
二阶非线性光学系数与共轭分子链长的关系   总被引:1,自引:0,他引:1  
封继康 《科学通报》1992,37(2):136-136
有机共轭分子由于其非定域的π电子体系常呈现大的非线性光学响应。共轭链长是影响其非线性光学系数的重要因素。 本文用量子化学方法研究了共轭链长对一系列有机分子二阶非线性光学系数的影响,所选的分子为:NEPEA—nn'(n+n'=0,1,2)和NPEPA—m(m=1,2,3),其化学结构如图1所示。在这2个系列中把苯环的贡献看作2个乙烯π键,则在胺基和硝基之间的π键数N_π从2变化到7。  相似文献   

20.
编者按     
<正>纳米碳材料是过去30年间最为活跃的研究领域之一.富勒烯、碳纳米管、石墨烯等一系列碳质新材料先后被发现,带来了丰富的新结构、新现象、新物理和新应用,掀起并带动了持续至今的纳米科技研究热潮.纳米碳材料之所以受到广泛关注是因为其特有的几何结构、以sp2杂化为主的成键方式以及由此带来的优异的电学、力学、热学、光学等特性.例如,碳纳米管和石墨烯分别是已知最细和最薄的材料,具有远高于硅的载流子迁移率、最高的热导率和力学强度,以及优异的柔韧性.纳米碳材料的性能对结构变化极其敏感,如手性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号