共查询到16条相似文献,搜索用时 57 毫秒
1.
绝缘子缺陷检测是电网巡检过程中重要的一环,为提高绝缘子缺陷检测的精度,该文提出一种基于改进YOLOv5算法的绝缘子缺陷检测算法——YOLOv5t,能够在保证网络运行速度的条件下,提升网络的检测精度.该算法在YOLOv5s的基础上,将三重注意力机制(triplet attention)添加到骨干网络中,给予每个特征通道不同的权重,以提高网络的检测精度;并采用CIoU Loss作为网络回归损失的损失函数,提升网络的收敛速度;同时将Soft-NMS作为网络的预测结果处理方法,降低网络的漏检率.YOLOv5t与几种常用的缺陷检测网络的对比实验结果表明,YOLOv5t的准确率达到97.2%,召回率达到98%,平均精度均值达到99.1%,较YOLOv5s算法分别提升了0.9%、5.1%和2.1%,并且检测速度没有受到影响. 相似文献
2.
为提高自动驾驶中的道路目标检测精度,设计了一种基于YOLOv5的道路目标检测模型。该模型在YOLOv5s的网络模型基础上,将原始的初始锚框聚类算法改为K-means++算法来减小随机带来的聚类误差;并在Backbone中SPP模块之前引入SENet注意力机制,以增强道路目标重要特征并抑制一般特征,达到提高检测网络对道路目标的检测能力。在VOC2012改进数据集上训练、测试,基于改进的YOLOv5s的模型比原始YOLOv5s模型平均准确精度提高了2.4%。实验结果表明,改进的YOLOv5s模型能较好地满足道路目标检测的精度要求。 相似文献
3.
针对现有的无人机检测算法无法同时兼顾检测速度及检测精度的问题,本文提出了一种基于YOLOv5s(You Only Look Once)的轻量化无人机检测算法TDRD-YOLO(Tiny Drone Real-time Detection-YOLO).该算法首先以YOLOv5s的多尺度融合层和输出检测层分别作为颈部网络和头部网络,引入MobileNetv3轻量化网络对原骨干网络进行重构,并将骨干网络后的通道在原YOLOv5s的基础上进行压缩,减小网络模型大小;其次,将骨干网络中Bneck模块的注意力机制由SE修改为(Convolutional Block Attention Module,CBAM)并在颈部网络引入CBAM,使网络模型更加关注目标特征;最后修改颈部网络的激活函数为h-swish,进一步提高模型精度.实验结果表明:本文提出的TDRD-YOLO算法平均检测精度达到96.8%,与 YOLOv5s相比,参数量减小到原来的1/11,检测速度提升1.5倍,模型大小压缩到原来的1/8.5.实验验证了本文算法可在大幅降低模型大小、提升检测速度的同时保持良好的检测性能. 相似文献
4.
根据以往钢铁表面缺陷检测技术的检测效能较低、准确性低的情况,提出一种改进YOLOv5s的钢材表面缺陷检测算法。主要改进为:加入坐标注意力机制(Coordinate Attention,CA)的空洞空间卷积池化金字塔 (Atrous Spatial Pyramid Pooling,ASPP),扩大模型感受野和多尺度感知能力的同时能更好的获取特征位置信息;加入改进的选择性内核注意力机制(Selective Kernel Attention,SK),使模型能更好的利用特征图中的频率信息,提升模型的表达能力;将损失函数替换为SIoU,提升模型性能的同时加快模型的收敛。实验数据表明,改进的YOLOv5s网络模型在NEU-DET数据集上的mAP值为78.13%,相比原网络模型提高了2.85%。改进的模型具有良好的检测型性能的同时检测速度为103.9 FPS,能够满足实际应用场景中钢材表面缺陷实时检测的需求。 相似文献
5.
针对传统钢材表面缺陷检测方法存在检测效率低、检测精度差等问题,提出一种基于改进YOLOv5的钢材表面缺陷检测算法。首先使用GhostBottleneck结构替换原YOLOv5网络中的C3模块和部分卷积结构,实现网络模型轻量化;其次在Backbone部分引入SE注意力机制,对重要的特征通道进行强化;最后针对数据集特点在网络中增加一个检测层,强化特征提取能力,并在Neck部分增加特征融合结构,使用DW卷积替换部分标准卷积以减少运算量。实验表明,改进的YOLOv5sGSD算法,模型体积减少了10.4%,在测试集上的mAP值为76.8%,相比原YOLOv5s网络提高了3.3%,检测精度和速度也明显高于一些主流算法。相比传统的钢材表面缺陷检测方法,提出的算法能够更加准确、快速地检测出钢材表面缺陷的种类和位置,并且具有较小的模型体积,方便于在移动端的部署。 相似文献
6.
针对铝型材表面缺陷不同类别尺寸差别较大,导致检测效果较差的情况,本文提出一种基于改进YOLOv5的铝型材表面缺陷检测算法。首先,在网络中嵌入CA(coordinate attention)注意力机制模块,使网络更好地抑制图像中无效样本的干扰,更多聚焦于有用信息;其次,在原有检测层上增加一个小目标检测层,获取和传递更为丰富且更具判别性的小目标特征,以解决对小目标缺陷检测精度低的问题,提高整体检测精度;最后,引入SIoU损失函数,用边界框回归之间的向量角度来重新定义损失函数,在有效减少总自由度损失的同时提高推理精度。将改进算法应用到天池铝型材数据集中进行验证,实验结果表明:该模型能有效识别铝型材表面不同种类的缺陷,较原YOLOv5算法mAP提高11.4个百分点,检测速度达到66.4 frame/s,能够满足目前铝型材工厂生产现场缺陷检测要求。 相似文献
7.
随着经济的快速发展及低碳环保出行方式的普及,电动摩托车投入量逐年上升,但由此带来的安全隐患也随之上升.针对传统的人工检查骑手是否规范佩戴安全帽耗时、耗力且存在漏检等问题,提出一种基于改进YOLOv5的头盔检测算法.首先,针对摩托车头盔大小尺寸不一的问题,使用K-means++算法重新设计初始锚框,增加了网络收敛速度;其次引入坐标注意力机制(Coordinate Attention),增强网络学习特征的表达能力;最后,引入α-IoU损失函数提高目标检测精度.实验表明,改进的YOLOv5模型的mAP达到98.83%,比YOLOv5的平均精度提升了5.29%,符合在道路复杂环境下对电动摩托车驾驶人头盔检测的要求. 相似文献
8.
由于无人机航拍具有场景复杂多样,目标尺度变化剧烈,高速低空运动模糊等诸多特性,给目标检测带来了很大的挑战。针对无人机航拍目标检测效果不佳的问题,提出了Dy-YOLO模型,在YOLOv5的基础上引入Dynamic Head注意力,从尺度感知、空间位置、多任务3个角度探索具有注意力机制的预测头潜力;设计了C3-DCN结构和Dynamic Head注意力相互配合增强特征提取能力;此外,还使用SimOTA标签分配方式来弥补小样本的损失,并使用CARAFE(content-aware resssembly of features)上采样算子,有效增强了不同卷积特征图的融合效果。在VisDrone2019测试集上,Dy-YOLO检测的平均均值精度达到了38.2%,较基线方法YOLOv5提高了7.1%,同时与主流的检测方法相比也取得更高的检测精度。结果表明,Dy-YOLO算法对于无人机航拍检测任务具有较好的性能。 相似文献
9.
针对目前车位检测方法效率低的问题,提出一种轻量级车位检测方法OG-YOLOv5。首先,基于YOLOv5网络添加车位分隔线方位回归分支,实现车位方位的准确预测,可直接根据网络预测结果推断完整车位信息;其次,通过检测尺度裁剪、Ghost模块重构网络实现模型轻量化;再者,通过在网络主干中引入ECA注意力机制、优化损失函数提高目标预测精度。通过对比实验,结果表明所提OG-YOLOv5网络的mAP达到了98.8%,模型参数量和计算量仅为原模型的32.0%和28.3%,在GPU和CPU上的检测时间分别减少了16.2%和28.1%,车位检测准确率和召回率分别达到了97.75%和96.87%。 相似文献
10.
针对密集行人检测中行人之间高度遮挡重叠所带来的精度低和漏检高的问题,提出一种单阶段密集行人检测方法Dense-YOLOv5。实验基于YOLOv5-L,首先使用改进的RepVGG模块来替代原有3×3卷积加强密集场景下特征信息的提取;然后在原有3个检测头的基础上添加1个检测头降低对小尺度行人的漏检;最后在网络特征融合阶段引入注意力机制,添加1个高效通道注意力(efficient channel attention,ECA)模块提高对有用信息定位的精度。实验结果表明:DenseYOLOv5相比原YOLOv5在CrowdHuman数据集上,在保证实时性的前提下,平均精度(AP)提高了3.6%,对数漏检率平均值(MR-2)降低了4.0%,证明了Dense-YOLOv方法在密集行人检测中的有效性。 相似文献
11.
针对密集场景下行人检测的目标重叠和尺寸偏小等问题,提出了基于改进YOLOv5的拥挤行人检测算法。在主干网络中嵌入坐标注意力机制,提高模型对目标的精准定位能力;在原算法三尺度检测的基础上增加浅层检测尺度,增强小尺寸目标的检测效果;将部分普通卷积替换为深度可分离卷积,在不影响模型精度的前提下减少模型的计算量和参数量;优化边界框回归损失函数,提升模型精度和加快收敛速度。实验结果表明,与原始的YOLOv5算法相比,改进后YOLOv5算法的平均精度均值提升了7.4个百分点,检测速度达到了56.1帧/s,可以满足密集场景下拥挤行人的实时检测需求。 相似文献
12.
针对O型密封圈缺陷难以人工识别的问题,提出一种基于改进YOLOv5的表面缺陷自动检测方法。在数据预处理阶段,采用半自动标注方法减少人工标注成本,同时将拼接图片改为9张以实现Mosaic数据增强方法。在网络预测层引入标签平滑方法以减少模型过度依赖标签。在骨干网络中添加卷积注意力机制模块,强化有效信息,使骨干网络提取更加细致的局部特征信息。同时,针对缺陷类型尺度变化大的特点,引入剪枝的双向特征金字塔网络,以解决大小缺陷在特征提取过程中的丢失问题。实验结果表明,基于改进的YOLOv5与原YOLOv5相比,O型圈表面缺陷检测平均精度均值提高了4.26%,并且检测速度在25 ms之内,能够满足实际生产需要。 相似文献
13.
车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。 相似文献
14.
针对跌倒对老年人安全性问题造成的影响,以及现有目标检测模型在人物跌倒时易漏检、鲁棒性和泛化能力差等问题,对YOLOv5s算法进行优化,提出一种老人跌倒检测算法。使用改进的RepVGG模块代替YOLOv5s算法中的3×3卷积模块,优化损失函数,选择K-means++算法对所用数据集进行聚类优化。结果表明,所提算法的鲁棒性好、泛化能力强,平均准确率比YOLOv3,YOLOv4,YOLOv5s, CBAM-YOLOv5s模型分别提高了9%,8%,3%和1.2%。所提出的算法能够满足现实中不同场景对老人跌倒行为的检测需求,可以应用于移动设备或者监控设备中,在老年人安全保障领域发挥重要作用。 相似文献
15.
基于改进YOLOv3的交通标志检测 总被引:2,自引:0,他引:2
针对交通标志检测小目标数量多、定位困难及检测精度低等问题,本文提出一种基于改进YOLOv3的交通标志检测算法.首先,在网络结构中引入空间金字塔池化模块对3个尺度的预测特征图进行分块池化操作,提取出相同维度的输出,解决多尺度预测中可能出现的信息丢失和尺度不统一问题;然后,加入FI模块对3个尺度特征图进行信息融合,将浅层大特征图中包含的小目标信息添加到深层小特征图中,从而提高小目标检测精度.针对交通标志数据集特点,使用基于GIoU改进的TIoU作为边界框损失函数替换MSE函数,使得边界框回归更加准确;最后,通过k-means++算法对TT100K交通标志数据集进行聚类分析,重新生成尺寸更小的候选框.实验结果表明,本文算法与原始YOLOv3算法相比mAP提升11.1%,且检测每张图片耗时仅增加6.6 ms,仍符合实时检测要求.与其他先进算法相比,本文算法具有更好的检测精度和检测速度. 相似文献
16.
针对目前自动驾驶领域的目标检测算法在交通场景下的漏检目标,目标定位不精确、目标特征表达不充分及目标识别效果欠佳等问题,提出一种基于TPH-YOLOv5的道路目标检测方法。首先为了减轻物体尺度急剧变化带来的漏检风险,增加了用于微小物体检测的检测头,为在高密度场景中精确定位对象,使用Transformer预测头来捕获全局信息;其次为了增强模型的特征表达能力,用SIMAM模块对卷积层的输出进行加权;最后,为了提高目标识别的精度,网络颈部增加了4个SPP块来进行多尺度融合,为了加快收敛速度和提高回归精度采用EIOU作为边界框损失函数。通过消融、对比和可视化验证实验表明,提出的算法比YOLOv5在平均精度上提高了8.1%,漏检率明显减少,目标检测效果明显增强。 相似文献