首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对算力有限的移动和嵌入式平台,提出了一种基于深度学习的轻量化火焰烟雾检测算法.利用数据增强来解决数据量较少的问题,使用one-stage目标检测方法中的YOLOv4作为火焰烟雾检测的模型框架,采用轻量化神经网络MobileNetV3替换YOLOv4的原主干特征提取网络,减少了模型参数量;再采用深度可分离卷积替换掉YO...  相似文献   

2.
针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,以放大更大强度的特征激活;其次,将坐标注意力机制和加权双向特征金字塔网络结合,搭建一种高效的双向跨尺度连接的加权特征聚合网络,以增强不同层级之间的信息传播;最后,用EIoU损失函数优化边框回归,精确目标定位。实验结果表明:在自制头盔数据集上,改进后的算法的平均精度(mAP)可达98.4%,比原算法提高了6.3%,推理速度达到58.69帧/s,整体性能优于其他主流算法,可满足交通道路环境下头盔佩戴检测的准确率和实时性要求。  相似文献   

3.
单次多边界框检测器(single shot multibox detector, SSD)算法因其性能优良已被应用于许多场景中,但该算法对小目标物体的检测精度偏低,主要原因是高层的语义信息没有被充分利用。为解决该问题,文章将其基础网络替换为残差网络(residual network, ResNet),同时融合深浅层的特征信息来增强浅层特征图的语义信息,此外还引入注意力模块,保留更多的目标特征信息,抑制无关信息,进一步提升对小目标物体的检测效果。在PASCAL VOC2007数据集上进行实验测试,平均精度均值为80.2%,优于其他SSD改进算法。由于增加了特征融合和注意力模块,所提算法检测速度有所下降,但相比于SSD改进算法,检测速度仍有明显的优势。  相似文献   

4.
随着全球人口老龄化不断加剧,由于跌倒致死的比例也随之增加,及时发现跌倒行为对降低死亡风险至关重要。针对现有跌倒检测算法在实际应用场景中出现漏检、准确率低等问题,本文将改进后的YOLOv5目标检测方法用于跌倒行为检测。具体改进措施:将YOLOv5的边界框损失函数GIoU更换为α-IoU;引入卷积块注意力机制模块(CBAM),使网络可以更专注地学习跌倒特征;在特征融合层引入加权双向特征金字塔网络结构(BiFPN)以充分利用不同尺度的特征,从而提高检测精度。实验结果表明,改进的YOLOv5模型对跌倒行为的检测精度mAP达到了98.8%,比改进前提高了4%,满足对实际应用场景下跌倒检测的要求。  相似文献   

5.
针对O型密封圈缺陷难以人工识别的问题,提出一种基于改进YOLOv5的表面缺陷自动检测方法。在数据预处理阶段,采用半自动标注方法减少人工标注成本,同时将拼接图片改为9张以实现Mosaic数据增强方法。在网络预测层引入标签平滑方法以减少模型过度依赖标签。在骨干网络中添加卷积注意力机制模块,强化有效信息,使骨干网络提取更加细致的局部特征信息。同时,针对缺陷类型尺度变化大的特点,引入剪枝的双向特征金字塔网络,以解决大小缺陷在特征提取过程中的丢失问题。实验结果表明,基于改进的YOLOv5与原YOLOv5相比,O型圈表面缺陷检测平均精度均值提高了4.26%,并且检测速度在25 ms之内,能够满足实际生产需要。  相似文献   

6.
为了提高烟雾检测的准确性,有效排除图像中类似烟雾的区域,降低由于环境和光照不同而产生的误检率,提出一种基于颜色矩并结合邻近算法进行分类学习的方法,对图像中的烟雾进行检测,该算法能克服光照不同、背景复杂的干扰,有效消除疑似烟雾区域的存在。算法由两部分构成:烟雾颜色矩特征的提取和利用邻近算法对特征数据集进行分类学习,自动找出并正确标记新的测试图像中烟雾区域的位置。  相似文献   

7.
针对遥感图像中背景复杂、目标分布密集、目标尺度形态多样等问题,该文在单阶段全卷积(FCOS)目标检测模型的基础上,基于沙漏特征金字塔并且与多尺度上下文场景结合,提出了沙漏网(HourglassNet)。针对卷积神经网络(CNN)中不同深度语义信息和空间信息不均衡的问题,提出了一种沙漏特征金字塔,通过将多尺度特征缩放至中间尺度进行融合和优化以获得全局特征。基于注意力机制将全局特征向不同尺度特征传递,在抑制无关特征的同时增强了有效特征,实现了对多尺度特征的补偿。为了将高层特征的语义信息更加充分地融入不同尺寸的特征图内,设计了多尺度上下文融合模块。利用适当的感受野提取高层特征的上下文信息,提升了特征的鲁棒性和辨识性。分别在DOTA v1.5和NWPU VHR-10公开遥感图像数据集上进行了性能对比与消融实验。结果表明,该文算法的均值平均精度(mAP)相比于FCOS在DOTA v1.5和NWPU VHR-10数据集上分别提升了4.3%和3.4%,且检测性能优于YOLOv3等其它对比方法。  相似文献   

8.
为提高管道缺陷图像检测的准确率,提出一种基于改进RefineDet的管道数字射线成像(digital radiography,DR)缺陷图像检测模型。该模型针对管道DR缺陷图像数据少、目标少等特点,从以下三个方面进行改进。首先,在骨干网络设计方面,使用Swin transformer代替VGG16作为主干网络,在提高特征提取能力的同时减少主干网络参数量。其次,针对管道DR缺陷图像目标数量较少而易受背景干扰问题,通过在主干网络与特征融合阶段之间加入全局注意力模块来强化模型对重要特征的关注,从而提高检测性能。最后,在后处理阶段,针对传统的非最大值抑制算法直接去除非最好预测框问题,使用软非最大值抑制算法以更合理的方式去除非最优预测框。结果表明:该方法能够有效实现管道DR缺陷图像的检测,并且相比于其他4种常用的目标检测模型,提出的模型可以有效提升管道DR缺陷图像检测的准确率,研究成果可为DR缺陷图像检测提供技术支撑。  相似文献   

9.
针对安全帽佩戴检测中存在的误检和漏检的问题,提出一种基于YOLOv5模型改进的安全帽佩戴检测算法。改进模型引入多尺度加权特征融合网络,即在YOLOv5的网络结构中增加一个浅层检测尺度,并引入特征权重进行加权融合,构成新的四尺检测结构,有效地提升图像浅层特征的提取及融合能力;在YOLOv5的Neck网络的BottleneckCSP结构中加入SENet模块,使模型更多地关注目标信息忽略背景信息;针对大分辨率的图像,添加图像切割层,避免多倍下采样造成的小目标特征信息大量丢失。对YOLOv5模型进行改进之后,通过自制的安全帽数据集进行训练检测,mAP和召回率分别达到97.06%、92.54%,与YOLOv5相比较分别提升了4.74%和4.31%。实验结果表明:改进的YOLOv5算法可有效提升安全帽佩戴的检测性能,能够准确识别施工人员的安全帽佩戴情况,从而大大降低施工现场的安全风险。  相似文献   

10.
快速准确的火焰检测对于降低火灾危害具有重要意义,为了加强模型的火焰特征提取能力以及解决特征图尺寸不平衡的问题,利用XSepConv (Extremely Separated Convolution)、大卷积核、Mish激活函数等构建CXANet-block(ConvolutionExtremelyAttentionNetwork)作为YOLOv5的骨干网络,引入CBAM (ConvolutionBlockAttention Module)注意力机制,提出一种基于CXANet-YOLO的火焰检测方法,通过增加通道注意力和空间注意力来提高检测性能.在自建火焰数据集上进行训练,提升模型的鲁棒性和泛化能力.实验结果表明,CXANet-YOLO模型比基准模型YOLOv5在火焰检测上具有更高的检测精度和检测速度,准确率提高了8.2%,检测速度每秒提升25帧.  相似文献   

11.
根据以往钢铁表面缺陷检测技术的检测效能较低、准确性低的情况,提出一种改进YOLOv5s的钢材表面缺陷检测算法。主要改进为:加入坐标注意力机制(Coordinate Attention,CA)的空洞空间卷积池化金字塔 (Atrous Spatial Pyramid Pooling,ASPP),扩大模型感受野和多尺度感知能力的同时能更好的获取特征位置信息;加入改进的选择性内核注意力机制(Selective Kernel Attention,SK),使模型能更好的利用特征图中的频率信息,提升模型的表达能力;将损失函数替换为SIoU,提升模型性能的同时加快模型的收敛。实验数据表明,改进的YOLOv5s网络模型在NEU-DET数据集上的mAP值为78.13%,相比原网络模型提高了2.85%。改进的模型具有良好的检测型性能的同时检测速度为103.9 FPS,能够满足实际应用场景中钢材表面缺陷实时检测的需求。  相似文献   

12.
主要研究室外具有复杂背景环境中的视频图像火焰区域分割算法.在充分研究视频图像火焰运动特性并考虑实际应用环境的基础上,提出了一种基于多均匀分布背景模型的运动检测算法,以此来实现视频图像中火焰区域的分割.该方法能够克服复杂背景环境带来的干扰,达到很好的火焰区域分割效果,且具有良好的实时性.该方法不仅适用于火焰区域分割,对智能视频监控系统中其他功能的运动检测也有很好的借鉴意义.  相似文献   

13.
针对YOLO v5l算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出一种基于改进YOLO v5l算法的排水管道缺陷检测方法。做了三点改进:首先提出了基于Focal EIoU的损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到BiFPN特征融合网络中,增加针对小目标的预测层;最后在YOLO v5l中引入CA注意力模块,提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。三种改进对平均准确度 mAP 值的提升分别为2.0、2.9、5.9 个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的改进YOLO v5l模型的mAP值达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。  相似文献   

14.
在电力线无人机自动巡检中,电力线边缘检测对提高输电线路检测精度有重要作用。目前,常用的RCF(Richer Convolutional Features for edge detection)算法在复杂背景下检测电力线时存在边缘模糊、在较低阶段产生的特征图包含太多噪声并在融合特征图时丢失多尺度信息等问题。对此,本文对RCF算法进行改进:1)使用具有平移不变性的下采样技术增强模型的鲁棒性;2)在RCF主干网络中引入CBAM(Convolutional Block Attention Module)机制,提高模型对电力线特征的表达能力;3)在RCF的侧输出网络中加入级联网络,借助基于通道注意力机制的多尺度特征融合模块对特征图进行融合,从而获得更优异的细节保持效果。实验结果表明:改进模型的最优数据集规模(Optimal Dataset Scale)、最佳图像比例(Optimal Image Scale)和平均精度(Average Precision)分别提高了0.7%、1.3%和1.7%,改进模型的检测结果噪声数量少、电力线更加清晰准确。  相似文献   

15.
针对MIC角点检测算法具有角点定位不够精确、误检、漏检等缺点,提出一种改进的MIC角点检测算法.为了克服MIC角点检测算法角点定位不准确的缺点,该检测算法利用最小二乘技术对角点局部方向线进行拟合,实现角点的亚像素定位;同时为了克服MIC角点检测易混淆边界点和角点的缺陷,引入检测直线,根据拟合点到检测直线的距离是否大于某一阈值剔除边界伪角点.实验结果表明,改进的MIC角点检测算法角点检测性能明显提高.  相似文献   

16.
针对目前胶囊内窥镜病灶检测模型存在检测疾病单一且效率低等问题,提出了一种基于YOLOv5的胶囊内窥镜病灶区域检测方法。该方法在原始YOLOv5基础上进行了如下改进:首先,在主干网络Backbone部分,添加一个CBAM(convolutional block attention module)模块,增强模型对重要特征的突出能力;其次,在头部网络Head部分,添加一个检测头,增强模型对小目标的检测能力;最后,将原始YOLOv5的泛化交并比(generalized intersection over union, GIoU)损失函数替换成完整交并比(complete intersection over union, CIoU)损失函数,使模型训练时更快地收敛。本文提出的方法在长江大学第一临床医学院提供的胶囊内窥镜影像数据上进行了实验,精确率达到了93.6%,召回率达到了94.3%,mAP@0.5达到了97.2%,而且检测速度达到了每帧0.027 2 s。实验结果表明提出的方法是有效的、灵活的、鲁棒的,能够满足临床医学诊断的实际需求。  相似文献   

17.
针对密集场景下行人检测的目标重叠和尺寸偏小等问题,提出了基于改进YOLOv5的拥挤行人检测算法。在主干网络中嵌入坐标注意力机制,提高模型对目标的精准定位能力;在原算法三尺度检测的基础上增加浅层检测尺度,增强小尺寸目标的检测效果;将部分普通卷积替换为深度可分离卷积,在不影响模型精度的前提下减少模型的计算量和参数量;优化边界框回归损失函数,提升模型精度和加快收敛速度。实验结果表明,与原始的YOLOv5算法相比,改进后YOLOv5算法的平均精度均值提升了7.4个百分点,检测速度达到了56.1帧/s,可以满足密集场景下拥挤行人的实时检测需求。  相似文献   

18.
针对目前车位检测方法效率低的问题,提出一种轻量级车位检测方法OG-YOLOv5。首先,基于YOLOv5网络添加车位分隔线方位回归分支,实现车位方位的准确预测,可直接根据网络预测结果推断完整车位信息;其次,通过检测尺度裁剪、Ghost模块重构网络实现模型轻量化;再者,通过在网络主干中引入ECA注意力机制、优化损失函数提高目标预测精度。通过对比实验,结果表明所提OG-YOLOv5网络的mAP达到了98.8%,模型参数量和计算量仅为原模型的32.0%和28.3%,在GPU和CPU上的检测时间分别减少了16.2%和28.1%,车位检测准确率和召回率分别达到了97.75%和96.87%。  相似文献   

19.
车辆信息检测是车型识别在智慧交通领域中的首要任务。针对现有的车辆信息检测技术在检测速度、精度以及稳定性方面存在的问题,提出了基于YOLOv3的深度学习目标检测算法——YOLOv3-fass。该算法以DarkNet-53网络结构为基础,删减了部分残差结构,降低了卷积层的通道数,添加了1条下采样支路和3个尺度跳连结构,增加了一个检测尺度,并通过K-均值聚类与手动调节相结合的方法计算出12组锚框值。最后通过迁移学习机制对YOLOv3-fass算法进行微调。在自研的车辆数据集上,YOLOv3-fass算法与YOLOv3、YOLOv3-tiny、YOLOv3-spp算法以及具有ResNet50和DenseNet201经典网络结构的算法做了对比实验,结果表明YOLOv3-fass算法能够更精准、高效、稳定地检测到车辆信息。  相似文献   

20.
 中文微博具有更新快、时效性强等特点,产生的热点话题均具有一定的突发性,与此同时文本中有代表性的特征词也会随之激增。利用这一特性,在传统的TF-IDF(term frequency-inverse document frequency)基础上提出一种改进的特征权重算法,称之为TF-IDF-KE(term frequency-inverse document frequency-kinetic energy),用以解决突发性热点话题在聚类时特征不明显的问题。该算法结合物体的动能原理,将特征项的突发值用动能的概念进行描述,加入权值计算,提高突发性特征项的权重,最后使用CURE(clustering using representatives)算法,实现微博的话题检测。该方法描述了文本和特征项所具有的动态属性,实验结果表明,该方法能够有效地提高话题检测的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号