共查询到20条相似文献,搜索用时 0 毫秒
1.
结合工程实际,采用灰色系统新陈代谢GM(1,1)模型进行对基坑周围建筑物进行沉降预测,并与普通GM(1,1)模型预测效果进行了比较,效果良好。 相似文献
2.
基于最小二乘支持向量机回归的基坑变形预测 总被引:1,自引:0,他引:1
将最小二乘支持向量机回归用于基坑变形预测.根据基坑位移的实测时间序列资料,应用最小二乘支持向量机回归建立了基坑位移与时间的关系模型.研究结果表明,最小二乘支持向量机回归用于基坑变形预测,具有较高的预测精度.与通常采用的BP神经网络相比,该方法具有预测误差小、计算快速、所需数据少等优点. 相似文献
3.
实时、准确的短期交通流预测是智能交通系统的基础和关键技术之一.由于灰狼优化算法(GWO)存在收敛速度慢、易陷入局部最优解等缺陷,为进一步提升短期交通流预测的精度,提出了基于改进灰狼算法(IGWO)优化支持向量机(SVM)的短期交通流预测模型.首先,本文提出引入帐篷(Tent)混沌序列初始化灰狼种群,更改收敛因子的线性递... 相似文献
4.
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.080 9 mm2,均方根误差为0.283 8 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 相似文献
5.
隧道掘进机(TBM)对于地质条件的高度敏感性以及TBM设备高度智能化和最终实现无人驾驶,对精准预测TBM掘进速度均提出了更高要求.为了未来实现TBM智能化控制,采用线性递减惯性权重对粒子群算法(PSO)进行改进,并把改进的粒子群算法和最小二乘支持向量机(LSSVM)相结合,建立了改进的PSO-LSSVM掘进速度预测模型.基于美国纽约Queens NO.3隧道的153组实验获得的岩体参数和现场实测掘进速度,采用SPSS软件进行了相关性分析,验证了参数的适用性,采用改进的PSO-LSSVM模型进行掘进速度预测,并通过与传统LSSVM模型和PSO-LSSVM模型进行对比发现:采用线性递减惯性权重改进的PSO-LSSVM预测模型的决定系数在训练集和测试集中均达到0.95及以上,均方误差在0.01以内,明显优于传统模型.本文所建模型在TBM掘进速度预测中有明显的精度优势,可辅助TBM智能化施工. 相似文献
6.
基于LS-SVM的交通流量时间序列预测 总被引:7,自引:2,他引:7
针对城市交通“智能运输系统”。本文提出了基于最小二乘支持向量机(LS-SVM)方法的交通流量时间序列预测,并给出了基于最小二乘支持向量机方法的算法,与传统的神经网络相比,此方法简单易实现.通过实验表明。此方法确实效果好,能取得较好的预测效果。 相似文献
7.
针对矿区开采沉降预测方法问题,在分析了矿区开采沉降因素的基础上,利用统计学习的新方法--支持向量机,结合最小二乘算法,提出了矿区沉降的预测模型,预测结果与神经元网络,多项式拟合结果进行比较,结果表明支持向量机在沉降预测方面准确性高,泛化能力强. 相似文献
8.
提出一种基于最小二乘支持向量机的福建省GDP预测方法.采用径向基核函数进行仿真模拟,经过参数选优建立了精度较高的预测模型.预测结果表明,利用最小二乘支持向量机进行预测具有误差小、拟合程度高等优点,可适用于GDP的预测. 相似文献
9.
基于支持向量机的铁路客运量预测 总被引:2,自引:0,他引:2
提出了一种基于最小二乘支持向量机(LS—SVM)的铁路客运量预测的新方法。1985-2002年的铁路客运量组成整个数据集。前5年的客运量用来预测第6年的客运量,由1985-1999年的客运量建立LS-SVM客运量预测模型。运用建立该模型预测2000-2002年的铁路客运量。结果表明:提出的LS-SVM客运量预测方法是有效的。 相似文献
10.
为了提高基于最小二乘支持向量机的故障预测精准度,提出了AFS-ABC算法,用于组合优化LS-SVM的规则化参数C和宽度参数σ.该算法将鱼群算法AFS简化模型中人工鱼的寻优更新方法引入到蜂群算法中,以互补优势、互克不足.通过100维Ackley函数验证了该算法在优化精度和搜索速度上较AFS算法与ABC算法的优越性,并以某航空电子系统电源模块记录电压数据序列的前40个作为LS-SVM模型的训练集,后15个作为测试集,利用MAT-LAB的LS-SVM工具箱进行状态预测仿真.结果表明,AFS-ABC算法较好地改善了LS-SVM的预测精度,同时解决了局部极值和寻优结果精度低的问题. 相似文献
11.
针对暖通空调(HVAC)系统,提出一种基于粒子群优化(PSO)算法和最小二乘支持向量机(LSSVM)的预测控制方法。该方法利用LSSVM建立HVAC系统预测模型并预测系统的输出值,引入输出反馈和偏差校正以克服模型失配等因素引起的预测误差,以此构造加权预测控制性能指标。由PSO算法滚动优化得到系统的最优控制量。利用该控制方法对一个HVAC系统进行仿真实验,结果表明该方法具有较好的控制效果。 相似文献
12.
提出融合模拟退火(Simulated annealing,SA)和最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)的电力短期负荷预测方法.由于LSSVM的预测精度依赖于其参数的选择,并且难以选取合适的参数值,因此,参数选择是LSSVM的一个关键问题.为了提高参数选择的质量和效率,采用SA算法进行LSSVM的参数寻优.以某市2010年1月1日至2011年1月7日的电力负荷数据和气象数据进行仿真实验, 实验结果表明该方法具有较高的预测精度. 相似文献
13.
基于粒子群最小二乘支持向量机的瓦斯含量预测 总被引:3,自引:0,他引:3
针对经验模型与确定性模型在应用中受到限制问题,采用基于统计学习理论的支持向量机对经验数据进行学习,建立瓦斯含量与其影响因素之间的映射模型,从而实现煤层瓦斯含量预测.支持向量机的惩罚因子和核参数取值不同将会明显影响其预测的精度,支持向量机本身也没给出解决的办法,引入粒子群算法自动搜索支持向量机参数.该方法克服了神经网络过学习问题和支持向量机人为选取参数的盲目性问题.通过对某矿区样本的学习预测研究,表明该方法可取得良好的预测效果,具有较好的适应性. 相似文献
14.
何萌 《空军工程大学学报(自然科学版)》2008,9(1):22-25
无人机费用预测是在装备研制设计阶段就必须考虑的重要问题。针对无人机费用预测小样本、具有不确定性等特点,提出了基于最小二乘支持向量机(LS-SVM,Least Squares Support Vector Machines)的无人机费用预测模型,并应用于研制费用、维修保障费用预测。应用结果表明,LS-SVM具有较高的费用预测精度。 相似文献
15.
烟气含氧量是影响火电厂锅炉运行安全性和经济性的一个重要因素,影响锅炉烟气含氧量的因素多面复杂,对烟气含氧量特性进行建模与控制是实现锅炉正常运行的基础.借助现场运行数据,根据锅炉烟气含氧量的特性,建立基于最小二乘支持向量机(LSSVM)的锅炉烟气含氧量预测模型.在此基础上结合全局寻优的混合粒子群算法(PSO),对锅炉烟气含氧量进行控制.仿真结果表明:该方法能够比较准确地列火电厂锅炉烟气含氧量进行测量和控制,为锅炉燃烧系统的闭环控制与优化运行提供了新的手段. 相似文献
16.
能源需求预测是能源规划和政策制定的前提和基础,能源需求预测受到众多因素的影响。为了快速、有效的预测我国对能源的需求,采用量子遗传算法(QGA)对最小二乘支持向量机(LSSVM)的参数进行优化,建立最优的能源预测模型。收集1997—2011年我国能源需求的相关数据作为训练样本和测试样本,对影响能源需求的指标数据,利用因子分析,对关联程度较高的指标数据进行公共因子的提取,减少判别指标间信息交互,通过预测模型的检验,并对比其他预测模型,验证了该模型在能源需求预测中具有极低的误差率。 相似文献
17.
最小二乘支持向量机(least square support vector machines,LSSVM)在解决小样本、非线性和高维度问题中表现出许多特有的优势.但是,如果输入的训练数据本身存在着大量的噪声和冗余,LSSVM在训练数据时会因抑制它们而削弱本身的推广能力,结构风险无法达到最小化,从而导致收敛速度慢、预测精度不高等缺点.提出了一种基于免疫模糊聚类(immune fuzzy clustering,IFC)的最小二乘支持向量机预测模型,运用免疫模糊聚类算法对历史数据进行预处理,从聚类后的数据提取LSSVM的训练样本,从而提高训练速度和预测精度,克服LSSVM的上述缺点.最后,将该模型运用到短期电力负荷预测中,与经典的SVM和BP神经网络相比具有更好的泛化性能和预测精度. 相似文献
18.
通过计算机对人脸进行分析,从而确定身份的技术统称为人脸识别,其具体内容包括图像预处理、特征选择和提取、分类。首先介绍了支持向量机和最小二乘支持向量机的基本思想和数学模型,推导了最小二乘支持向量机的算法步骤,在对人脸图像进行预处理的基础上,采用奇异值分解扩展算法提取人脸特征,然后再采用上述算法对人脸图像进行分类。通过实验可知本文中的算法可以对人脸图像进行有效分类,对解决小样本分类问题是有效的、可行的。 相似文献
19.
为了提高风力发电功率预测的准确性,建立了基于CEEMDAN分解的SMA算法优化LSSVM的短期风电功率组合预测模型。首先,采用完全集合经验模态分解(CEEMDAN)对原始风电功率数据进行分解与重构。随后,为了进一步优化最小二乘向量支持机模型(LSSVM)的参数,引入了黏菌算法(SMA)优化,通过调整惩罚参数和核参数来提高模型性能,最后,构建多种对比模型对比分析表明CEEMDAN-SMA-LSSVM模型预测精度最高,预测结果更接近真实值。研究可用于风电场短期风电功率预测使用。 相似文献
20.
基于Hammerstein模型的连续搅拌反应釜非线性预测控制 总被引:2,自引:0,他引:2
该文针对化工过程中广泛使用的连续搅拌反应釜(CSTR),提出一种基于最小二乘支持向量机Hammerstein模型的非线性预测控制方法。Hammerstein模型的非线性环节采用最小二乘支持向量机逼近,线性环节则采用外因输入自回归模式(ARX)结构。基于此模型结构设计非线性模型预测控制器,将非线性预测控制问题转化为线性模型的预测控制和非线性模型的求逆问题,进而给出了预测控制律以及非线性环节逆模型的构造方法。对CSTR的仿真结果表明:与传统的非线性模型预测控制以及PI控制器相比,该文方法精度更高,能够有效跟踪控制反应物浓度。 相似文献