首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
准噶尔东部致密油水平井局部非储层井段地层易水化膨胀、分散或剥落掉块,长水平段钻井液携砂和润滑减阻难度大。根据地质工程特征及钻井液技术难点,提出了针对性的钻井液技术对策。通过室内实验对现场常用降失水剂、抑制剂及封堵剂等关键处理剂的评价与优选,进一步简化了钻井液配方;并强化了钾钙基钻井液的抑制和封堵性能,形成了一套适用于准噶尔东部致密油长水平井的钻井液体系。结果表明,该钻井液具有较强的抗盐、抗钙及抗钻屑污染的能力,混油后的钻井液润滑性能可满足长水平段钻井延伸能力的要求,现场应用效果良好。  相似文献   

2.
页岩地层水基钻井液研究进展   总被引:4,自引:1,他引:3  
王森  刘洪  陈乔  王莉莎 《科学技术与工程》2013,13(16):4597-4602,4613
开发能满足页岩长水平段钻井井壁稳定要求的钻井液是页岩地层安全钻井的一项关键技术。目前广泛采用的油基体系具有高成本、高污染的缺点。归纳了具有仿油基性能以及防塌防水化的各种新型水基钻井液,包括成膜钻井液(MEG钻井液、甲酸盐钻井液、聚合醇钻井液和硅酸盐钻井液)与隔膜钻井液的防塌成膜机理及其优良特性和现场应用情况,新型纳米钻井液技术的研究进展。建议加强成膜机理的进一步研究,并提高该类钻井液的润滑性、防卡性及膜效率,开发适应具有时敏性的长段页岩钻井的防塌成膜处理剂,并加强在国外页岩气钻井中已实践的纳米钻井液的研究。  相似文献   

3.
鄂尔多斯盆地致密油资源丰富,具有很大的开发潜力,但长庆油田A井区在页岩油长水平段钻进时井壁失稳问题突出。现有的水平井防塌技术重点关注钻井液体系优化问题,无法给出页岩的坍塌周期。本井区页岩的主导坍塌机制是钻井液滤液沿天然微裂缝渗入地层,引起黏土矿物水化,导致岩石强度降低。考虑化学势变化和流体流动与骨架变形的耦合作用以及岩石吸水扩散过程和强度弱化规律,建立致密页岩井壁坍塌周期分析模型。结果表明:活度较低、膜效率较高的钻井液可以有效抑制地层孔隙压力增长;封堵性强的钻井液可以降低地层水含量的增长,减缓地层岩石强度的弱化;A井区使用密度为1.3 g/cm3的细分散聚合物钻井液体系和复合盐钻井液体系钻进水平段时井眼坍塌周期分别为4.5和9 d,而使用油基钻井液体系时相同密度下浸泡10 d井眼扩大率仅为4%,油基钻井液体系效果最好,坍塌周期大于10 d。  相似文献   

4.
自20世纪20年代以来,为解决钻井过程中遇到的各种复杂问题,在钻井液体系优化和新材料研发的基础上,对油基钻井液技术进行不断完善和改进,目前已形成包括抗高温、低固相、无土相、可逆乳化及恒流变等多种高性能油基钻井液体系和技术,并得到广泛应用。近年来,随着陆上易开采油气资源逐渐枯竭,世界范围内油气勘探开发逐步向页岩气、超深层、超深水等非常规油气、复杂油气资源迈进,对钻井液性能要求越发严苛。在水基钻井液无法满足要求的情况下,油基钻井液因固有的抗温性、页岩抑制性、水合物抑制性、润滑性和储层保护性等优势已逐渐成为钻探高温深井、大斜度定向井、页岩气水平井、海洋深水等各种复杂地层的主体钻井液技术,不仅给油基钻井液的发展带来了机会,也使油基钻井液面临前所未有的挑战。梳理并阐述油基钻井液的发展历程和目前技术现状、难点以及未来发展趋势;提出研发适合油基钻井液的“固壁剂”、油基钻井液配套的系列防漏堵漏材料、Gemini型油溶性聚合物等具特殊分子结构的絮凝剂、油基钻井液携屑剂、抗极高温度的乳化剂等,并开展生物质合成基液和绿色油基钻井液处理剂应用研究,以及采取光催化和微生物协同降解原理的废弃油基钻井液无害化处理研...  相似文献   

5.
钻井液是油气勘探开发中首个与油气层相接触的外来流体,其体系和配方优选是钻井过程中油气层保护技术的核心内容之一。聚焦适用于复杂地层的环保天然高分子基钻井液体系,综述了近几年我国天然高分子基钻井液体系极具代表性的研究成果,并融入国内具有一定影响力的课题组在此领域取得的研究成果,分门别类地介绍了天然杂聚糖类、纤维素基、淀粉基、烷基糖苷类木质素基等天然高分子基钻井液体系,探讨了天然高分子基钻井液体系的热点问题,并对其应用方向及主要发展趋势进行了展望。  相似文献   

6.
为解决油基钻井液在页岩气水平井中应用时带来的环保问题和钻井液处理成本较高的问题,通过室内实验优选出了性能优良的封堵剂、抑制剂和润滑剂,并结合其他处理剂,研究出一套适合页岩气水平井的防塌水基钻井液体系,室内对其综合性能进行了评价.结果表明:钻井液体系经过130℃老化后,其流变性能稳定、滤失量较小,具有良好的耐温性能;钻井液体系低渗砂盘封堵实验的瞬时滤失量和静态滤失速率分别为0.6 mL和0.33 mL/min,具有良好的封堵性能;钻井液体系的抑制性能和润滑性能与现场油基钻井液体系基本相当,能够很好的起到抑制页岩水化分散和降低摩擦阻力的作用;另外,钻井液体系中加入20%NaCl、2%CaCl2和20%岩屑后,体系老化前后的流变性能和滤失量变化均不大,说明体系具有较强的抗污染能力.现场应用结果表明,使用防塌水基钻井液施工的X-101井钻井过程顺利,各项施工参数均达到设计要求,并且与前期已钻井X-3HM井相比,钻井周期、井下复杂时间以及平均井径扩大率均明显降低,水平段钻速明显提高,达到了良好的钻井效果.  相似文献   

7.
姬塬油田罗平10井钻井(完井)液技术   总被引:2,自引:0,他引:2  
赵巍 《科学技术与工程》2012,12(12):2987-2990
罗平10井是姬塬油田延长组长8油层的一口水平井,在施工过程中易发生井壁坍塌、缩径等复杂情况.介绍分段钻井液体系,上部井段采用强抑制无固相聚合物钻井液体系,以稳定井壁获得较快机械钻速.斜井段和水平段采用低固相生物聚合物钻井液体系,以携带岩屑保持井眼干净,降低摩阻保证井下安全,同时有利于油层的保护,经水力喷射压裂获得高产油流.  相似文献   

8.
本文通过回顾高密度钻井液的研究现状、技术难点以及发展趋势,指出高密度钻井液研究和技术工作的重点在于采用国外成熟的油基、合成基钻井液技术方面的经验,发展和完善自身的钻井液体系,以有效解决钻井液研究和实践方面存在的流失性、沉降稳定性等方面的矛盾。  相似文献   

9.
针对东海油气田N区块钻井过程中易发生井壁坍塌的问题,通过梳理分析N5区块及周边构造三口探井地质条件、地层特性、测井数据,基于地质力学与岩石力学基本原理计算了井壁坍塌压力;并对使用水基钻井液和油基钻井液的钻井工况进行对比。研究发现在钻井液密度高于坍塌压力的情况下,使用密度相对较低的油基钻井液即能够保持井壁稳定,无阻卡等复杂问题。使用水基钻井液钻井,则部分泥页岩井段井径扩大,起下钻明显阻卡,处理复杂问题耗时较长。分析主要原因,在于油基钻井液能够降低泥页岩水化程度,减缓钻井液向微裂隙中的渗流,抑制微裂隙扩展,提高钻井液对井壁的有效支撑作用。因此,在东海油气田复杂泥页岩地层钻井中,使用油基钻井液能够更好地保持井壁稳定,避免或减少钻井复杂问题。  相似文献   

10.
针对长宁区块龙马溪组多口井水平段井壁失稳所导致的卡钻、埋钻等井下复杂情况进行研究,发现龙马溪组页岩具有脆性强、弱水敏的特性,在井深、应力及外力不断增加的条件下容易产生细微裂缝,在钻井液滤液侵入井壁后,井壁微裂缝继续扩张,导致井壁失稳。根据井下微裂缝特征,室内采取多种微纳米级材料进行有效封堵,建立了一套密度可调控的强封堵油基钻井液体系,其封堵效果良好,并具有很好的井眼清洁及沉降稳定性能。现场表明,3 600~4 200 m开始试验该钻井液体系后,相比试验前起下钻扭矩明显减小,证明该钻井液体系在井壁形成了致密封堵层,对井壁稳定起了至关重要的作用。  相似文献   

11.
采用多重光散射仪(AGS)持续测试高密度油基钻井液静置不同时间的背散射光强度的变化规律,分析油基钻井液在不同时间内的综合稳定性。研究了密度、NaCl质量分数、CaCl2质量分数及CaSO4污染对油基钻井液稳定性的影响。实验结果表明:在相同密度下,高密度油基钻井液的不稳定是由于加重剂等固相粒子沉降引起样品池的顶部有清液层析出,底部有一定团聚沉淀形成;随着密度的增加(2. 0~2. 6 g/cm3),钻井液的综合稳定性增强,说明加重剂固相的增加并不是导致钻井液不稳定的主要原因,与钻井液中的乳化润湿体系有很大的关系。NaCl质量分数增加(3%~12%)对钻井液稳定性影响不大; CaCl2质量分数增加(5%~25%),钻井液体系的稳定性增加; CaSO4浓度的增加对油基钻井液的稳定性影响较为复杂,在高浓度(15%)和低浓度(3%~10%)钻井液稳定性均会降低,质量分数为12%时钻井液的稳定性最好。  相似文献   

12.
顺9地区志留系储层为低孔特低渗油藏,常规直井开采、水力压裂增产效果有限。为增加泄油面积,提高开采效率,在顺9地区部署长位移水平井进行开发,以提高单井产能。通过优化井眼轨迹剖面、井身结构及钻具组合,合理配置钻井液和钻井参数,应用新工艺新技术等措施,克服了井壁稳定性差、长位移水平段摩阻扭矩大、油基钻井液条件下固井质量差等一系列难题,为后期分段改造创造了有利条件。  相似文献   

13.
准噶尔盆地南缘山前构造霍尔果斯背斜安集海河组地层高陡、发育有断层和巨厚泥岩,地层压力和地应力普遍高。常规水基钻井液钻井时,安集海河组成为该探区安全钻井的瓶颈,往往决定着钻井的成败。因此,有必要开展高密度油基钻井液的研究和试验。重点开展了超高密度柴油基钻井液的配方研究与综合性能评价,并在霍B安集海河组地层中开展试验。实钻证明,该钻井液体系性能稳定,抗污染能力强,配制最高密度为2. 65 g/cm~3,未发生井下事故,钻井提速和井筒质量效果显著。霍B油基钻井液的成功试验为今后山前构造巨厚泥岩高效安全钻井提供科学依据。  相似文献   

14.
针对页岩气水平井用油基钻井液环境污染性强、废弃物处理难度大等缺点,开展了一种新型的页岩气井用环保型钻井液体系研究。通过生物合成基础油制备和系统配方性能实验评价,研发了一种以改性植物油为连续相,盐水为分散相的油包水乳化钻井液体系;该体系不含芳香烃等组分,易生物降解,废弃物满足环保标准。将生物合成基钻井液在长宁气田HA平台3口井中进行了应用,应用效果表明,该体系抑制性、封堵性和润滑性好,能保障钻井、电测和下套管等作业顺利施工,环保风险和废弃物处理成本低。  相似文献   

15.
油基钻井液可有效降低施工成本,缩短钻井周期,在大斜度定向井、水平井及各种复杂地层钻探施工中应用广泛。然而,油基钻井液侵入会改变井周地层的岩石物理性质,给储层流体识别、测井精细评价带来极大挑战。为了明确油基钻井液侵入对核磁共振测井响应的影响,本文选取新疆准噶尔盆地南缘超深井致密砂砾岩储层岩心,围绕岩石物性、钻井液成分、油水比、流体性质、钻井液侵入时间、温度等六个方面分别开展油基钻井液成分、油基钻井液驱替和油基钻井液渗吸三组岩石物理实验,并分析实验过程中核磁共振T2谱变化特征。结果表明,油基钻井液中的基液组分既能在正向压差作用下侵入井周地层,也可通过浮力和毛管力的作用渗吸进入地层。当地层含水/油时,油基钻井液基液侵入会引起微小孔隙T2谱(<10ms)横向驰豫时间和谱峰值减小,谱峰逐渐左移;而中孔隙T2谱峰(>100ms)右移且面积增大;上述T2谱变化速率主要受到地层渗透率、侵入时间和温度影响,钻井液类型、油水比等因素影响有限。  相似文献   

16.
在油气勘探领域,射流式液动冲击器常被用来加速硬岩钻井,降低钻柱摩擦,解决钻头粘滑等问题。实验表明,利用清水不能准确预测实际钻井中油基钻井液驱动的射流式液动冲击器性能。采用模拟和实验相结合的方法,研究了油基钻井液对射流式液动冲击器的动态特性的影响。结果表明,油基钻井液密度和固相颗粒对液动冲击器的压力降及运动特性具有显著影响。在液动冲击器的工作流量范围内,由于高速流体的剪切稀释特性,油基钻井液的非牛顿流变特性对其输出特性影响不大。总的来看,射流式液动冲击器可以在油基钻井液中稳定工作,具有正常的动力水平和良好的适应性。  相似文献   

17.
针对油井水平钻井施工中钻井液面临的技术难点,分段选用适合的泥浆体系。CQSP-2钻井液体系是以复合盐(Na CL、HCOONa等)作为主处理剂,并配合淀粉、乳化沥青以及超细碳酸钙等组成的强抑制性、无荧光、低成本和环保型水基钻井液体系,可以满足长7组油页岩的稳定及水平段井段的润滑要求,斜井段和水平段泥饼摩擦系数均能达到设计要求。  相似文献   

18.
仿油基钻井液具有减少下钻摩擦阻力、降低环空压耗、增强钻井液抑制性等优点,在分支井、水平井以及斜度井中等难度较大的油气井钻进作业中应用较为广泛。本文通过对两种类型的仿油基钻井液相关性能进行研究,力求选择性能最佳的油基钻井液,以期为油气田的顺利开采提供参考。  相似文献   

19.
抗高温高密度油基钻井液可用于复杂地层钻井,利于井壁稳定,可用于钻大位移井、水平井、超深井等,但在高温状态下面临钻井液沉降问题。钻井液的沉降包括静态沉降和动态沉降,过去主要关注钻井过程中钻井液的动态沉降,但由于钻井液具有剪切稀释性,一般静态条件下沉降稳定性较好的钻井液体系在较高剪切速率下仍具备良好的稳定性,主要研究高温状态下油基钻井液体系的静态沉降稳定性。为使体系达到较好的静态沉降稳定性,以往对各类核心处理剂,乳化剂、有机土、重晶石和油水比的加量和配比只做出试探性调整,实验存在一定盲目性,不能确定实验周期。针对上述问题,分析室内和现场密度2.5 g·cm~(-3)柴油基钻井液流变参数与静态沉降密度差的相关性,建立数学函数模型;将模型反馈的流变参数值与实验结合起来,利用模型优化基础实验,调整处理剂加量至相应流变参数值,使体系静态沉降密度差最小;最终得到一组抗温190℃,密度2.5 g·cm~(-3)沉降稳定性好的油基钻井液体系。研究过程具有目的性,体系静态沉降稳定性建模方法和实验模型结合的方法为优化钻井液体系性能提供了一种新思路。  相似文献   

20.
针对抗高温高密度钻井液体系及应用工艺对超深井、深井成功钻探至关重要,国内外抗温200℃、密度达2.30g/cm3的水基钻井液体系的研究应用报道较少,且国外在此条件下多选择油基钻井液体系的问题。通过优选磺化类抗温处理剂、加入高温稳定剂等途径建立了抗温200℃、密度达2.30g/cm3的淡水钻井液体系和含氯化钾体系。该体系热稳定性优良,高温高压下流变性合理,具有一定抑制性。对深井、超深井钻井液的选择使用具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号