首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
用电化学方法制备了过氧化聚吡咯膜修饰碳纤维微柱电极,并对其电化学行为进行了研究.结果表明,在中性和酸性缓冲溶液中,过氧化聚吡咯膜修饰微电极能有效地排除抗坏血酸的干扰而选择性地对多巴胺产生响应.  相似文献   

2.
黄尿酸在活化玻碳电极上的电化学行为   总被引:5,自引:0,他引:5       下载免费PDF全文
利用线性扫描伏安法 (LSV) ,循环伏安法 (CV) ,微分脉冲伏安法 (DPV)研究了黄尿酸在活化玻碳电极(AGCE)上的电化学氧化行为 .在pH =3.0的磷酸 (0 .2mol L) -硼砂 (0 0 5mol L)的缓冲液中 ,黄尿酸在 +6 80mV左右处 (vs .SCE)产生一个阳极氧化峰 ,峰电流与黄尿酸浓度在 2 .0× 10 - 7- 1.0× 10 - 4mol L的范围内呈良好的线性关系 ,最低检测限为 2 .0× 10 - 8mol L .用本法不需分离直接测定了模拟尿样中的黄尿酸 ,相对标准偏差为 4 .5 % ,回收率为 10 5 % .  相似文献   

3.
用伏安法分别在PH1.0和PH7.0的磷酸盐缓冲溶液介质中研究了Fe^2+,I^-,Fe(CN)6^3-以及苯醌和萘醌等特种在聚邻苯二胺(PPD)膜电极上的氧化还原行为。  相似文献   

4.
本文研究了对苄二硫醇在玻碳汞膜电极上的伏安行为,发现在KNO3介质中,于-0.75V有一灵敏的还原峰,该峰具有较强的吸附性质,属阴极溶出峰.实验表明,在4.3×10-7~8.0×10-5mol/L浓度范围内,1.5微分还原峰电流与对苄二硫醇浓度有良好的线性关系,检出限为1.3×10-7mol/L.  相似文献   

5.
采用电化学方法制得聚吡咯(PPy)膜修饰电极,经不同的化学方法处理,此类电极对溴(Br-)离子具有选择性效应,分别研究了溴(Br-)离子的掺杂效应及电极的电化学行为.  相似文献   

6.
本文提出一个使用玻碳薄汞膜电极测定氟哌酸的伏安法。在pH5.6 ̄7的乙酸 ̄乙酸钠缓冲溶液中,氟哌酸在-1500mv有一个灵敏的导数阴极波,用于胶囊中氟哌酸含量的测定,结果满意。氟哌酸浓度在0.2 ̄500mg/L范围内与峰高呈线性,检测限为0.2mg/L,加标回收率在97.2 ̄104%间,对含量为0.1g/粒的氟哌酸胶囊重复测定,RSD(n=5)为0.67%和1.26%。方法简便,结果准确。  相似文献   

7.
作者分别以玻璃炭和铂片为基础电极,在电解质的乙腈溶液中,由吡咯电聚合成不同厚度的聚吡咯膜电极(PPy),并测定了电解质浓度、溶液水含量、pH值的变化、氧化性盐的存在,以及环境气氛对PPy的静止电位的影响。  相似文献   

8.
离子注入Ni—C修饰电极伏安法测定痢特灵   总被引:5,自引:0,他引:5  
痢特灵在0.1mol·L-1盐酸中,用注入镍的玻碳电极作为工作电极进行伏安测定,形成一良好的还原峰,峰电位Ep=-0.34V(vs.SCE).峰电流与痢特灵浓度在1.0×10-5~1.0×10-4mol·L-1范围内成线性关系,检出限为5.0×10-6mol·L-1.用于片剂测定,得到满意的结果.用循环伏安法研究了该物质的电化学行为及其反应机理,认为痢特灵的电极反应过程属于准可逆过程。  相似文献   

9.
聚吡咯膜电极对茜素红的电催化作用   总被引:2,自引:0,他引:2  
用循环伏安法研究了电化学聚合的聚吡咯(PPy)膜电极对茜素红电极反应的电催化活性。在聚吡咯膜电极上,茜素红的阳极氧化电流比在铂电极上增加数倍。相应的阴极过程也较铂电极显出一定的催化活性。茜素红在铂电极上和PPy膜电极上都显示了吸附现象。在PPy膜电极上用电位扫描法载入一定的铂微粒时,载铂微粒的PPy膜电极上茜素红的电催化电流进一步增加.在较高的电位和扫描速率下更为明显;但载入的铂微粒过多时,则使电流峰变平坦。  相似文献   

10.
本文研究了多巴胺(DA)在铁氰酸钴膜(CHCF)修饰电极上的伏安行为,讨论了各种因素对DA伏安特性的影响,实验表明,该电极对DA的氧化有电催化作用。该电极可用于DA的测定,线性响应范围为4.0×10-6~2.0×10-4mol/L,电极寿命达30天。  相似文献   

11.
研究了玻碳汞膜电极上L-半胱氨酸(L-Cys)的直接和间接测定方法,并建立了间接和直接测定的最佳条件.在pH=4.56的缓冲溶液中L-Cys于-0.44 V处有一灵敏的不可逆的循环扫描还原峰,其峰电流与L-Cys的浓度在1×10-6~1×10-4 mol/L内呈良好线性关系(r=0.998 9).另外,根据L-Cys在适当的pH条件下与铜离子的络合作用,通过阳极溶出伏安法测定Cu2+来间接测定L-Cys的含量,本法L-Cys浓度在2×10-7~3×10-6 mol/L内呈良好线性关系(r=0.999 2).2种方法可成功地用于合成样品中L-Cys的测定.  相似文献   

12.
通过循环伏安法和差分脉冲伏安法研究了碳原子线(CAW)修饰电极对尿酸电化学反应的催化作用.研究发现,在含有0.5 mmol/L尿酸的pH=6.8的0.1 mol/L PBS缓冲溶液中,尿酸在CAW修饰电极上的氧化峰电位比裸玻碳电极上的氧化峰电位负移0.049V,而氧化峰电流ipa比裸玻碳电极增加了3.96倍,说明碳原子线修饰电极对尿酸的电化学过程具有很好的催化作用.  相似文献   

13.
用循环伏安法制备聚L-苯丙氨酸修饰玻碳电极,研究尿酸在聚L-苯丙氨酸修饰电极上的电化学行为,建立循环伏安法测定尿酸的新方法.在pH 4.0的磷酸盐缓冲溶液中,尿酸在聚L-苯丙氨酸修饰玻碳电极上出现一氧化峰,峰电位为Epa=+638 mV(相对于Ag/AgCl电极),氧化峰电流与尿酸浓度在5.00×10-7~5.00×10-5 mol/L范围内成线性关系,检测限:1.0×10 -7 mol/L.对1.0×10 -5 mol/L UA溶液平行测20次,其相对标准偏差为3.1%.用于尿液中尿酸的测定,结果满意.  相似文献   

14.
采用循环伏安法在Co2+、Fe3+、K3Fe(CN)6共存的溶液将CoHCF/PB复合膜修饰于过氧化聚吡咯修饰的复合陶瓷碳电极表面(PPyox-CoHCF/PB/CCE)。采用扫描电镜(SEM)方法对修饰电极进行表征,并研究了修饰电极对H2O2的电催化活性。结果表明:PPyox膜的存在更易于Co-HCF/PB在其上的固载、改善了电极表面金属铁氰化物的分散性与修饰电极的电催化活性。在优化的实验条件下,安培法检测H2O2的线性范围为6.0×10-6~4.0×10-3mol.L-1,检出限为3.0×10-6mol.L-1(3 Sb,n=10)。  相似文献   

15.
采用层层组装法制备了金和天冬氨酸复合膜传感器.用循环伏安法(CV)和脉冲伏安法(DPV)等研究了尿酸在该传感器上的电化学行为.结果表明,在PBS 7.0作为支持电解质的条件下,尿酸在该组装传感器上的氧化峰的峰电流是裸电极传感器上的6.5倍.优化条件下,用DPV对尿酸进行了测定,在尿酸浓度为4.0×10-7~1.0×10-4 mol/L范围内浓度与尿酸的氧化峰电流具有良好的线性关系,线性方程为:I(μA)=0.010-0.022 C(μmol/L),相关系数为0.998.检出限(RSN=3)为1.0×10-7 mol/L.该方法用于实际尿样的测定,回收率为99.4%~104.1%.  相似文献   

16.
采用循环伏安法制备了氢氧化铜/过氧化聚吡咯膜修饰电极(Cu(OH)2/PPyox/CCE),并对其进行了表征。研究了该修饰电极对Glu的电催化氧化活性。结果表明,该修饰电极对Glu的氧化具有良好的电催化活性。在优化条件下,安培法检测Glu的线性范围为2.0×10-7~1.2×10-3mol.L-1,灵敏度最高为2500.0μA.mmol-1.cm-2,检出限(3Sb)为1.0×10-7mol.L-1,加标回收率为96.5%~100.6%。该方法已用于血清中葡萄糖含量的测定。  相似文献   

17.
聚甘氨酸修饰碳纤维微电极差示脉冲伏安法测定尿酸   总被引:4,自引:0,他引:4  
研究聚甘氨酸修饰碳纤维微电极(CFME)的电化学性质和在抗坏血酸存在下测定尿酸的分析方法,以及尿酸在聚合膜电极上反应的动力学参数。在选定的条件下,尿酸和抗坏血酸的峰电位分别为0.33V和0.03V,两峰电位差达300mV,可以有效地避免抗坏血酸对尿酸测定的干扰。该方法可用于实际尿样中尿酸的测定。  相似文献   

18.
实验结果表明,经在碱性溶液中活化的玻碳电极对抗坏血酸的电化学氧化具有较高的电催化活性,能降低其氧化过电位达370mV;测定了抗坏血酸在活化玻碳电极上电化学氧化的极化曲线,其Tafel斜率为50~78mV;提出了抗坏血酸在活化玻碳电极上电化学氧化的机理,表观电荷传递系数α为1.3±0.1,确定了反应机理中的决速步骤.  相似文献   

19.
制备了茜素红-多壁碳纳米管修饰电极,用循环伏安法和线性扫描伏安法研究了尿酸在修饰电极上的电化学行为.结果表明,在pH=1.01的0.2mol/L盐酸底液中,尿酸在修饰电极上出现一不可逆的氧化峰,氧化峰电流与其浓度在2.0×10-6-1.0×10-4moI/L范围内具有良好的线性关系Ip=4.94×10-7 0.248c,相关系数R=0.9957,检出限为1.0×10-6mol/L,人尿样品中尿酸测定的回收率为101.3%-106.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号