首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用2018年1月、4月、7月、10月郑州市城区8个监测站点的PM_(2.5)和PM_(10)浓度数据与气象数据,对郑州市城区PM_(2.5)和PM_(10)的时相变化特征及气象要素对其产生的影响进行研究.结果表明:郑州市城区在1月份的PM_(2.5)浓度最高(118.1μg·m~(-3)),污染严重,4月份PM_(10)浓度最高(169.4μg·m~(-3)).通过分析PM_(2.5)和PM_(10)的比值(PM_(2.5)/PM_(10))发现, PM_(2.5)是郑州市城区主要的大气污染物.PM_(2.5)和PM_(10)与气象要素之间的相关分析表明,PM_(2.5)和PM_(10)与气温和露点温度均呈显著负相关(P0.01),PM_(10)与降水呈显著负相关(P0.05),PM_(2.5)与气温之间的相关性(r=-0.441,P0.01)高于PM_(10)和气温的相关性(r=-0.311,P0.01).另外,当风速在2~3 m·s~(-1)时,PM_(10)最低;而风速大于4 m·s~(-1)时,颗粒物浓度增加明显,且对于PM_(10)的增加作用更显著.露点温度与颗粒物浓度之间也存在一定关系,当露点温度大于0℃时,颗粒物浓度会随露点温度的增加而降低.2018年郑州市PM_(2.5)与PM_(10)昼夜变化呈双峰型特征;风速与温度的双重作用导致PM_(2.5)浓度先于PM_(10)达到最高值,而空气湿度和露点温度则是造成04:00时颗粒物较低的主要原因.另外,通过多元回归分析发现,各月份昼夜时段颗粒物浓度主要受温度和相对湿度影响;在各时段中,温度与颗粒物浓度关系最为密切,风速次之,湿度最弱,各气象要素对PM_(2.5)浓度的影响较PM_(10)浓度更大.  相似文献   

2.
本文针对芜湖市PM_(2.5)的影响因素分析与预测研究,分别建立了多元线性回归和ARMA预测等模型,使用EVIEWS、EXCEL等软件编程求解,研究得出:PM10和CO对PM_(2.5)浓度的变化影响较大,符合芜湖市PM_(2.5)浓度变化的ARMA(1,2)模型.最后为政府和环境部门有针对性地治理PM_(2.5)污染问题提供较为科学的建议.  相似文献   

3.
利用2014-12-01—2015-11-30期间济南市空气质量的监测数据,运用Spearman秩相关分析法研究该市大气中细颗粒物PM_(2.5)、可吸入颗粒物PM_(10)、臭氧(O_3)的浓度与气象要素之间的相关性,其中气象要素选取温度、相对湿度和风速。结果表明:PM_(2.5)、PM_(10)及O_3与气象要素有显著的相关性,PM_(2.5)、PM_(10)的浓度与相对湿度呈正相关,与温度和风速呈负相关,O_3的浓度与温度和风速呈正相关,与相对湿度呈负相关;PM_(2.5)、PM_(10)浓度的日变化特征呈双峰双谷型,O_3浓度的日变化特征呈单峰单谷型;PM_(2.5)、PM_(10)的浓度在冬季、秋季、春季较大,在夏季较小;O_3的浓度在夏季最大,在冬季、秋季、春季相对较小,O_3已成为影响济南市夏季空气质量的首要污染物。  相似文献   

4.
对2013年合肥市的PM_(2.5)质量浓度、各类空气中污染物、气象要素等数据进行统计处理,通过定性、定量分析,得出PM_(2.5)质量浓度与其他各量间的相关性.结果表明,合肥地区雾霾情况较为严重,除7月份外,PM_(2.5)质量浓度超标率超标率均在87%以上,且冬季更为明显.工业较为发达的庐阳区PM_(2.5)质量略浓度高于其他地区.由Pearson相关性分析可知,PM_(2.5)质量浓度与PM_(10)浓度、NO_2浓度、SO_2浓度等有较强相关性;与能见度、温度、风速、平均低云量、降水量等呈负相关性;与逐日平均总云量、平均相对湿度、平均气压无相关性.  相似文献   

5.
利用美国驻中国大使馆2009年以来的PM_(2.5)浓度监测数据、MODIS光学厚度数据和NCEP边界层气象要素数据,对近年来北京地区PM_(2.5)和边界层内气象要素进行分析。结果表明:2009—2011年夏、秋季以及2012年夏、冬季北京地区PM_(2.5)污染情况较为严重,2013和2014年污染情况稍有转好;北风为有利于PM_(2.5)扩散的气象条件,且随着北风增强,扩散效果更好;南风为有利于PM_(2.5)堆积的气象条件,且随着南风增大,堆积效果略微增加;边界层高度越高,越有利于PM_(2.5)的扩散;相对湿度越大,越有利于PM_(2.5)的堆积;降水对PM_(2.5)有明显的驱散作用。21世纪以来,北京地区的平均边界层高度有明显的降低趋势,从2500 m降低到1500 m以下,其他气象要素没有明显的年际变化。  相似文献   

6.
利用南宁市地面8个监测站与中分辨率成像光谱仪(MODIS)数据反演得到的气溶胶光学厚度值作为数据源,运用回归分析法,选取月、季、年三种时间尺度,分别对PM_(2.5)、PM_(10)浓度与AOD值进行相关性研究。结果表明,PM_(2.5)与AOD相关性好于PM_(10),月尺度PM_(2.5)和PM_(10)与AOD值相关性强,除个别月份外,R2均在0.7以上;季尺度PM_(2.5)和PM_(10)与AOD值相关性,随季节变化显著,但R2均在0.5以上;年尺度PM_(2.5)和PM_(10)与AOD值拟合,采用一元二次模型,R2在0.5以上。上述结果表明AOD在月尺度上与地面站点污染物监测数据PM_(2.5)和PM_(10)的相关性最为显著,故可在月尺度上通过卫星遥感影像反演的AOD推算地面PM_(2.5)和PM_(10)的空间浓度场。  相似文献   

7.
为确定石家庄市采暖期易引发大气污染的气象条件,通过对石家庄市2016—2018年采暖期的空气质量逐日监测数据,以及同期气象观测资料进行研究,分析了石家庄市采暖期的空气质量变化特征,探讨了影响环境数据变化的主要气象要素,筛选并确定了PM_(10)、PM_(2.5)、AQI的污染气象指标。结果表明:石家庄市采暖期内所有天数均为非一级天,其中污染日较多,占69.58%,以PM_(2.5)为首要污染物的天数最多,其次是PM_(10);PM_(10)、PM_(2.5)、SO_2、NO_2、CO浓度与气温、变压、风速和混合层高度负相关,与相对湿度正相关(SO_2除外),O_3与气象要素的相关性和上述五种污染物相反;气象要素对大气环境影响的排序为:相对湿度风速混合层高度水汽压变压气温;确定的三种污染气象指标准确率分别是70.37%、70.37%、72.97%。  相似文献   

8.
PM_(2.5)是我国大中型城市的主要污染物之一,已成为多学科领域的研究热点.基于监测点的监测数据无法直接获取城市内部空气污染的高分辨率空间分布情况,以上海市中心为研究区,引入土地利用回归(LUR)模型模拟PM_(2.5)质量浓度的高分辨率空间分布情况.双变量相关分析表明,与PM_(2.5)质量浓度分布相关性最强的地理变量分别是国控点2 000 m缓冲区内的道路长度、2 500 m缓冲区内的建筑面积、2 500 m缓冲区内的绿地面积、500 m缓冲区内的水体面积以及人口密度.基于以上变量,用多元线性回归分析建立PM_(2.5)质量浓度空间分布的LUR模型.在研究区内建立1 km×1 km格网,用LUR模型模拟各格网交点的PM_(2.5)质量浓度,再通过空间插值分析得到上海市PM_(2.5)质量浓度的空间分布模拟图.结果表明,PM_(2.5)模拟质量浓度存在明显的空间梯度差异,整体呈现西部高东部低的格局,并由人口密集区域向四周递减.人类活动是影响PM_(2.5)质量浓度分布的主要原因,模拟结果与实际情况相符.  相似文献   

9.
基于滇东城市曲靖2014-2018年2个国控空气质量监测点的逐日空气质量指数和6种空气污染物(SO_2、NO_2、PM_(10)、PM_(2.5)、CO和O_3)逐小时浓度资料以及同期气象要素数据,统计分析了曲靖主城区空气污染变化特征及气象因子对污染物浓度分布的影响.结果表明:①2014至2018年,曲靖主城区空气质量优良率为97%-99.7%,污染日数呈逐年减少趋势,首要污染物以PM_(10)、PM_(2.5)和O_3为主.②曲靖主城区空气质量呈现出夏秋季节较好、冬春季节较差的季节性特征.③6种污染物浓度各自表现出不同的季节性变化和日变化特征.气象条件影响着曲靖主城区污染物的扩散、迁移和转变.④风速与SO_2、NO_2、CO和PM_(2.5)浓度具有较好的负相关关系;与O_3浓度呈正相关关系;风速对PM_(10)影响较复杂,当风速小于2 m/s时有利于PM_(10)扩散,当风速超过2 m/s时反而导致PM_(10)浓度增加.⑤地面盛行西北风和东南风时,SO_2、NO_2、CO、PM_(10)和PM_(2.5)浓度较高;地面盛行西南风时,O_3浓度达到最高值.⑥降水对6种污染物具有显著冲刷清洁作用.⑦温度与O_3浓度呈显著性正相关关系,与NO_2、CO、PM_(10)和PM_(2.5)浓度呈显著性负相关关系;与SO_2浓度关系不显著.⑧相对湿度与O_3、PM_(10)和PM_(2.5) 3种首要污染物浓度呈显著性负相关关系;与SO_2、NO_2和CO 3种非首要污染物浓度的关系不显著.  相似文献   

10.
首先基于遥感平台的遥感影像数据,提取北京市4期各年份不透水表面数据并反演AOD值;然后,采用M估计稳健回归的思想,对AOD值与监测站点PM_(2.5)数据进行回归分析,建立回归模型.根据回归模型和反演的AOD数据,生成空间连续的PM_(2.5)质量浓度数据.最后,探讨城市扩张对PM_(2.5)污染时空分布及演变的影响机制,定量分析两者关系.结果显示:北京市2000、2006、2012年和2016年不透水表面面积分别为6 646.37、9 680.52、9 736.31 km~2和9 769.20 km~2,2000—2016年不透水表面面积增长率为46.99%,相应的PM_(2.5)质量浓度的增长率为56.61%.北京市2000—2016年的PM_(2.5)污染时间上呈现先加重后在波动中减轻,空间上呈现从西北—东南方向逐渐增高的趋势,严重污染区域为房山区的东部、大兴区、通州区、海淀区、朝阳区、丰台区、石景山区、东城区、西城区、前宣武区及前崇文区.在此期间,北京市不透水表面空间分布与PM_(2.5)污染空间分布高度一致.东南方向的通州区、顺义区、平谷区和大兴区不透水表面面积增长率达到90%以上,同时这些区域PM_(2.5)质量浓度增长值也高于西北区域.  相似文献   

11.
通过对乌鲁木齐市从2015年1月1号到2016年12月31号每天的PM_(2.5)、PM_(10),以及SO_2、CO NO、NO_2、O_3污染物浓度等数据的整理和分析,进一步设立向量自回归(VAR)模型,对时间序列PM_(2.5)与其它空气污染物之间的关系探索使用格兰杰因果关系检验、脉冲响应函数方法和方差分解的方法分析,建立了它们之间的自回归模型关系,探讨了其他空气污染物对PM_(2.5)的影响。结果表明:乌鲁木齐市PM_(2.5)与其它空气污染物所构成的空气质量系统是稳定的,PM_(10)SO_2、CO、PM_(2.5)、NO_2、O_3浓度值的增加会引起PM2.5浓度值持续较长时间的增加,其中SO_2对影响作用最大;O_3浓度值的增加则会使PM_(2.5)浓度值降低。  相似文献   

12.
基于2014—2016年逐小时安阳、郑州和南阳市空气质量六要素质量浓度及常规地面气象资料,分析了空气质量总体特征及气象要素对主要污染物浓度的影响,结果表明:2014—2016年,河南省空气质量南部好于中、北部,主要表现为南阳的优良天数最多,安阳、郑州的较少.2014—2016年河南省空气质量逐年提高,安阳、郑州和南阳市平均优良天数分别为153、165、178 d,呈逐步增多趋势.河南省夏季污染类型正由煤烟型向油烟型转变,冬季仍以煤烟型为主.夏季空气污染物中PM_(2.5)、PM_(10)污染水平逐年下降,O_38 h污染水平急剧上升,而冬季主要以PM_(2.5)和PM_(10)为主.O_3与气温和风速呈正相关,与气压、降水量和相对湿度呈负相关,相关系数最高的为气温,最低为风速.而PM_(2.5)和PM_(10)与气象要素的相关性与O_3相反.3个城市O_3重污染条件下基本都是以SE风向为主,而PM_(2.5)和PM_(10)重污染条件下多以偏N风和E风向为主.  相似文献   

13.
鉴于肺部可吸入颗粒物PM_(2.5)对人体的危害,利用多元分析及时间序列的方法将PM_(2.5)浓度变化划分为稳定部分(由分子内部的作用引起浓度变化)和不稳定部分(由外部环境因素,即温度,风力,风向及天气等)进行预测.收集乌鲁木齐7个监测站点2014年11月至2015年3月(冬季)每天的PM_(2.5),PM_(10),CO,NO_2,O_3,O_3(8 h),SO_2及天气等相关因素数据,对PM_(2.5)浓度建立预测模型并进行结果分析.相关分析表明:户外PM_(2.5)与PM_(10),CO,NO_2和SO_2具有较高的相关性.对平稳部分利用指数平滑模型预测PM_(2.5)浓度,得到最好的平滑指数是0.32.主成分回归(PCR)模型用于预测PM_(2.5)浓度的不稳定性成分,得到R2值为0.803.最终,将2015年3月至2015年5月的数据利用5种性能指标检验模型,结果表明该模型方法预测效果较好,有一定的实用价值.  相似文献   

14.
利用MODIS数据研究区域大气PM_(2.5)浓度分布是环境动态监测的有效方法。获取美国NASA发布的分辨率为3km的MOD光学厚度产品;提取2016年1月至2017年7月期间长沙市10个大气监测站点的PM_(2.5)浓度数据进行相关性分析,建立PM_(2.5)浓度与AOD之间的线性、幂函数以及指数函数3种相关性模型;引入湿度影响因子建立大气PM_(2.5)浓度订正模型,采用PM_(2.5)浓度订正模型订正PM_(2.5)浓度。结果表明:湿度订正提高了PM_(2.5)与AOD相关性,幂函数相关性模型的方差值相对其他2种模型较好,运用幂函数相关性模型研究长沙市MODIS气溶胶光学厚度与PM_(2.5)浓度的相关性较好。  相似文献   

15.
利用南宁市世锦赛期间(10月6—13日)的MODIS影像反演的气溶胶光学厚度(AOD)和PM_(2.5)、PM_(10)质量浓度为数据源,统计以地基站点为中心在站点位置0.5°×0.5°区域范围内的AOD日均值和各监测站PM_(2.5)、PM_(10)质量浓度日均值,运用6种数学模型(线性、一元二次、一元三次、对数、幂函数、指数)进行相关性分析。结果表明,在AOD与PM_(2.5)日均值建立的六种关系模型中,一元三次函数模型的拟合效果更好,且6、7、13日的AOD与PM_(2.5)相关性较高,R2在0.6以上;在AOD与PM_(10)日均值建立的六种关系模型中,一元三次函数模型的拟合效果更好,但AOD值与PM_(10)相关性整体比PM_(2.5)相关性低,7、9日的AOD与PM_(10)相关性较高,R2在0.6以上。对于相关性较好的,可用该模型函数来反演和监测PM_(2.5)、PM_(10)质量浓度。  相似文献   

16.
《河南科学》2016,(9):1557-1562
利用2003—2014年安阳市环境保护局环境监测站PM_(10)、SO_2、NO_2逐日质量浓度监测数据及同期中国气象科学数据共享服务网提供的安阳市常规气象观测数据,采用Pearson相关系数法,对安阳市PM_(10)污染物浓度统计特征及其与同期气象要素的关系进行了研究分析.结果表明:安阳市的首要污染物为PM_(10),代表工业区的铁佛寺污染物浓度最大;PM_(10)浓度具有明显的年际、月、季等变化特征,2012年之前总体呈下降趋势,2013—2014年又有所增加,冬季平均浓度最大,其次为秋季,夏季最小;总体上,空气质量以良为主,PM_(10)夜间浓度高于白天,全天平均质量浓度最低时段是在下午;另外,PM_(10)四季质量浓度与同期气象要素有一定的相关性,尤其是月相关系数较高,与能见度、气温、降水量呈负相关,与气压存在正相关关系.  相似文献   

17.
针对上海市颗粒物的污染和防治问题,利用2014年4月14日—2015年3月24日10个国控监测点的PM2.5和PM10小时数据及对应的气象因素资料,以PM2.5质量浓度占PM10质量浓度的比例为研究对象,使用聚类分析和相关性分析PM_(2.5)/PM_(10)的时空分布特征.结果表明:P2.5和PM10的季节高低为冬春秋夏,PM_(2.5)/PM_(10)的季节分布在不同区域存在差异性.PM_(2.5)/PM_(10)的日变化呈现双峰型趋势,峰值出现在05:00和14:00左右,上午PM_(2.5)/PM_(10)高于下午.颗粒物质量浓度及PM_(2.5)/PM_(10)具有明显的"周末效应",这与车辆通行政策与人类作息时间变动相关.在空间分布上,颗粒物质量浓度及PM_(2.5)/PM_(10)均表现为背景站浦西站浦东站.  相似文献   

18.
基于2017年连续数天对福州市三环快速路测试路段交通的颗粒物浓度进行监测,同步记录的气象、交通特征数据,对颗粒物污染特征进行探究并分析得到,风速、温度、湿度与PM_(2.5)、PM_(10)浓度均呈显著的负相关性。研究结果显示:该路段"周末效应"并不明显,总的交通量与PM_(2.5)、PM_(10)浓度均有明显正相关性;在调查的6种车型中,小型客车、大型货车对颗粒物浓度影响最为明显,其中,小型客车对PM_(2.5)、PM_(10)有较明显正相关影响,而大型货车和PM_(2.5)呈明显的正相关性的同时与PM_(10)相关性较弱。  相似文献   

19.
利用天津市2013—2018年空气质量监测数据和同期气象数据,分析了天津市大气主要污染物浓度变化特征及其与气象要素之间的关系。结果表明,自2013年实施"大气十条"以来,天津市环境空气质量逐年改善效果显著,6项主要污染物中,除O_3外,PM_(2.5)、PM_(10)、SO_2、NO_2、CO_5项污染物浓度均明显下降。与京津冀13个城市平均水平相比,天津市2018年环境空气质量总体略好,但与首批实施新环境空气质量标准的74个重点城市平均水平相比仍有一定差距。降水、风速、湿度和温度等气象要素对于天津市空气质量影响显著,风速、气温、降水、日照时数与O_3正相关,与其他污染物负相关;气压与SO_2、NO_2、CO正相关,与O_3负相关性,与颗粒物无明显相关性;相对湿度与PM_(2.5)和CO正相关,与SO_2、NO_2负相关,与PM_(10)、O_3无明显相关性。  相似文献   

20.
以2014—2017年信阳城区逐日气象要素(最高气温、最低气温、均温和降水量)和环境空气自动监测系统逐日数据(SO_2,NO_2,PM_(10),PM_(2.5),CO,O_3污染物浓度和AQI)为研究对象,采用统计分析和Pearson相关系数法,分析气温和降水量与主要污染物之间关系.结果表明:(1)2014—2017年信阳城区空气质量以优良为主,重度、严重污染的日数较少.(2)日气温(最低、平均和最高)和日降水量与主要污染物SO_2,NO_2,PM_(10),PM_(2.5),CO浓度和AQI呈显著的负相关,与O_3呈显著的正相关,说明气温愈高、降水量愈多,空气质量愈好,即夏季空气质量优于冬季.通过统计2014—2017年逐日空气质量,四季空气质量从夏季、秋季、春季和冬季依次由好转差.(3)相较于非雨日,雨日主要污染物浓度明显降低;降水过程中或者降水之后,大气主要污染物浓度显著下降,共同说明降水量对主要污染物具有显著淋洗作用,尤其是颗粒物PM_(10)和PM_(2.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号