首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水中天然有机污染物作为致癌消毒副产物的已知前体物,会增强配水系统的生物活性,对人类健康产生严重危害。本研究旨在提高澄清工艺处理水库原水的净化效能,降低中小型水厂出厂水中NOM的含量。试验首先考察了澄清工艺中上升流速对絮体层形成的影响,确定了工艺的最佳上升流速,在此基础上探究了投加粉末活性炭对澄清工艺去除有机物的强化效能。研究结果表明,在3.60 m/h的上升流速下,悬浮泥渣澄清工艺可将原水浊度去除至0.37 NTU,此工况对UV254和CODMn的去除率分别为57.92%和50.53%。在投加粉末活性炭后,工艺对有机物的去除率明显提高,其中在投加量为15.0 mg/L时对UV254和CODMn的去除率分别达到88.69%和63.38%。分子量分级实验结果表明,水库水中小分子量有机物含量最多,其中小于3 kDa的有机物占比59%,经沉淀工艺和澄清工艺处理后,此部分有机物含量分别降低了30.71%和38.80%,在投加活性炭后沉淀工艺和澄清工艺去除率分别提升了26.38%和19.07%。三维荧光光谱表明...  相似文献   

2.
粉末活性炭处理原水中溶解性机物的试验研究   总被引:2,自引:0,他引:2  
采用模拟试验的方法,考察混凝剂与粉末活性炭(PAC)投加去除姚江原水溶解性有机物(DOC)的效果.试验结果表明,表征活性炭吸附性能的碘值与亚甲基兰值与有机物去除效果无显著相关性;混凝处理主要去除的是分子质量1×104~3×104u区段的有机物,而粉末活性炭处理其他区段的有机物效果较好,尤其是分子质量小于1×104u区段,去除率均在40%以上;混凝处理分子质量小于3×103u区段的有机物效果较差,几乎全部依赖粉末活性炭去除,该区段质量分数占姚江原水的70%,这是处理姚江原水时粉末活性炭投加量相对较大的主要原因.  相似文献   

3.
松花江水源粉末活性炭去除硝基苯的试验研究   总被引:1,自引:0,他引:1  
针对受硝基苯污染的松花江水,研究了应用粉末活性炭去除硝基苯的技术参数.试验结果表明,针对受污染的松花江水,唐山产木质PAC对硝基苯的吸附速度最快,吸附容量也最大;其具体投加参数为:硝基苯超标5-15倍时投加30 mg/L的PAC,15-40倍时投加50 mg/L的PAC,吸附时间2 h以上;硝基苯超标大于50倍时,PAC的投量80 mg/L,吸附时间不低于2 h.应用PAC的生产性试验结果表明,出水硝基苯含量低于国家标准,并且具有很高的稳定性.  相似文献   

4.
粉末活性炭-超滤膜处理微污染原水试验研究   总被引:25,自引:0,他引:25  
采用粉末活性炭-超滤膜工艺对微污染原水进行处理.试验主要研究该工艺对有机物的去除效果,粉末炭改善膜通量以及防止膜污染的效果.投加粉末活性炭能有效地提高膜通量,通过反冲洗,膜通量能得到很好的恢复,说明粉末炭能防止膜污染.由于粉末炭去除小分子量的有机物效果良好,因此,该工艺能有效地去除有机物和消毒副产物.  相似文献   

5.
通过试验,研究了分析用粉末活性炭处理水中微量石油类的影响因素及处理效果,结果表明,在聚合氯化铝(PAC)作混凝剂条件下,粉末活性炭投加量大于75mg/L,可使处理水中石油类含量达到国家标准。  相似文献   

6.
以市政污泥为厌氧发酵底物,以厌氧消化污泥为接种物,以活性炭为载体,通过批次实验活性炭投加对厌氧消化性能的影响.运行数据表明,活性炭的投加能够有效提高厌氧消化系统的产甲烷潜力及有机物去除能力.在活性炭最佳投加量8 g·L-1运行条件下,系统累积甲烷产量、TSS去除率、TCOD去除率和多聚糖去除率分别为1 452.5 m L、(52.3±3.2)%、(54.7±1.2)%和(87.6±5. 5)%.较空白对照组分别提高了89.7%、24.0%、69.9%和27.1%.  相似文献   

7.
粉末活性炭对水中嗅味物质IPMP和IBMP的吸附特性   总被引:1,自引:0,他引:1  
研究粉末活性炭(PAC)对水中嗅味物质2-甲氧基-3-异丙基吡嗪(IPMP)和2-甲氧基-3-异丁基吡嗪(IBMP)的吸附特性,考察pH、共存离子、本底值和预氯化对吸附作用的影响,并分析吸附动力学和等温吸附模型。研究结果表明:PAC对IPMP和IBMP吸附效果较好,当投加量为25 mg/L时,对IPMP和IBMP的去除率分别为88.74%和95.31%,IBMP比IPMP更容易被吸附;在试验浓度范围内,吸附等温线符合修正的Freundlich方程,吸附速率符合二级反应动力学模型,以化学吸附为主;pH对吸附有一定影响,强酸性环境对吸附有明显的抑制作用,最佳吸附pH为10;对于IBMP,共存离子均有利于吸附;PAC对于IPMP,Ca2+有利于吸附,Na+和Cl-不利于吸附;在原水中,两者的吸附容量明显降低,主要是小分子有机物产生竞争吸附;余氯对PAC吸附IPMP和IBMP有明显抑制作用;随着氯质量浓度增大,抑制作用加强。  相似文献   

8.
李裕华 《科技信息》2012,(13):419-419
目前全世界每年有500-1000万吨石油通过各种途径进入水体。水体被石油类污染后,不仅感观状态发生变化,而且其使用价值受到影响,水产资源和人类健康受到严重危害。本文是利用粉末活性炭对石油类污染物的溶解性来进行处理的,首先探讨了粉末活性炭的性质与水中油类污染物吸附机理,然后进行了粉末活性炭深度处理含油污水的机理与实验研究。  相似文献   

9.
张秀艳 《中国西部科技》2010,9(22):67-67,83
本文针对日益普遍的以地表水为原水的饮用自来水中的嗅味问题,结合秦皇岛市水源地富营养化和水厂运行的实际情况,分析了嗅味产生的原因,提出了几点去除嗅味的理论措施。  相似文献   

10.
硫醇类物质是南方某江排洪时饮用水中嗅味的主要致嗅物质。以乙硫醇为典型致嗅物质,研究了臭氧活性炭对乙硫醇的去除特性。结果表明,臭氧活性炭对乙硫醇有很好的去除效果,其中臭氧氧化是去除乙硫醇的关键工艺,活性炭发挥的作用有限;去除乙硫醇嗅味的适宜臭氧接触时间是15 min,当水质变化不大时,完全氧化水中乙硫醇所需要的有效臭氧投加量(mg/L)为乙硫醇初始浓度(μg/L)的0.04倍。当进水乙硫醇浓度大于100μg/L时,需要增加适宜的预氧化处理,与臭氧活性炭联用才能有效去除水中硫醇类致嗅物质产生的嗅味。  相似文献   

11.
臭氧活性炭去除水中硫醇类致嗅物质的研究   总被引:1,自引:0,他引:1  
硫醇类物质是南方某江排洪时饮用水中嗅味的主要致嗅物质。以乙硫醇为典型致嗅物质,研究了臭氧活性炭对乙硫醇的去除特性。结果表明,臭氧活性炭对乙硫醇有很好的去除效果,其中臭氧氧化是去除乙硫醇的关键工艺,活性炭发挥的作用有限;去除乙硫醇嗅味的适宜臭氧接触时间是15min,当水质变化不大时,完全氧化水中乙硫醇所需要的有效臭氧投加量(m g/L)为乙硫醇初始浓度(μg/L)的0.04倍。当进水乙硫醇浓度大于100μg/L时,需要增加适宜的预氧化处理,与臭氧活性炭联用才能有效去除水中硫醇类致嗅物质产生的嗅味。  相似文献   

12.
研究了粉末活性炭对微污染水源中的CODMn、浊度和色度的去除效能。结果表明,投加粉末活性炭能有效去除水中的有机物和色度,是解决水厂短期及突发性水质污染的有效措施之一。  相似文献   

13.
在室内模拟条件下研究了重金属离子浓度、吸附时间、废水pH值、温度和固液比等因素对污泥活性炭去除废水中重金属的影响.结果表明:Cd2+浓度为40 mg·L^-1、Zn^2+浓度为10 mg· L^-1、Pb2+浓度为10 mg·L^-1、Cu^2+浓度30 mg·L^-1,吸附90 min,pH值为4,温度为25℃,固液比为10g·L^-1的条件下,污泥活性炭对废水中Cd^2+、Zn^2+、Pb^2+、Cu^2+的去除效果最佳,去除率均在53%以上.  相似文献   

14.
探究了椰壳酸洗活性炭、椰壳水洗活性炭、煤质活性炭、果壳活性炭、木质活性炭等对2,4,6-三氯苯甲醚(2,4,6-trichloroanisole, 2,4,6-TCA)和2,4,6-三溴苯甲醚(2,4,6-tribromoanisole, 2,4,6-TBA)的吸附等温线和吸附动力学。研究发现5种活性炭均可有效吸附卤代苯甲醚,吸附等温线都能较好拟合Freundlich模型(R2>0.97)。其中果壳活性炭和椰壳活性炭吸附效果较好,果壳活性炭对2,4,6-TCA的吸附常数(KF)最大,为11.90,椰壳酸洗活性炭对2,4,6-TBA的吸附常数(KF)最大,为9.47。五种活性炭的吸附过程均符合拟二级动力学模型(R2>0.97),椰壳水洗活性炭对2,4,6-TCA的吸附最快,椰壳酸洗活性炭对2,4,6-TBA的吸附最快。以椰壳酸洗活性炭为研究对象,探究其吸附机制和主要影响因素,结果表明内扩散是主要限速步骤,化学吸附是主要吸附机制,初始底物浓度和溶解有机物对吸附效果影响较大。  相似文献   

15.
对昆山傀儡湖微污染原水进行了粉末活性炭-混凝-超滤联用工艺的中试研究,研究表明混凝剂PAC投加量在30 mg/L的情况下,对浊度有较好的去除效果,但是对有机物的去除率较低.通过膜前在线再混凝,对CODMn的去除率有所提高,但对UV254没有明显影响;本中试对水中颗粒数也有较大的去除,去除率达到99%以上.  相似文献   

16.
投加粉末活性炭强化好氧颗粒污泥的稳定性   总被引:1,自引:0,他引:1  
好氧颗粒污泥系统稳定运行一段时间后,往往会发生颗粒污泥解体现象,系统内水力选择压与基质选择压之间的平衡失调,是导致颗粒污泥解体、系统失调的内在诱因.采用了投加粉末活性炭(PAC)强化好氧颗粒污泥稳定性的调控措施.结果发现,PAC的投加对污泥物理性状及微生物生长动力学方面影响明显:投加PAC可以强化系统内水力选择压,提高污泥的湿密度和强度,降低污泥生长速率和产率,调节污泥浓度和粒径大小,降低粒径分布分散化的趋势,避免因传质阻力引起的颗粒内部分裂,保证好氧颗粒污泥系统持久维持稳定.PAC的投加对污泥化学性状影响甚微:不管投加PAC污泥与否,在颗粒污泥形成过程中均伴随着胞外蛋白浓度的增加及污泥表面相对疏水性的上升.  相似文献   

17.
水样的嗅味检测方法主要分为感官分析法和仪器分析法,在介绍水中嗅味的来源、分类及检测方法的基础上,对感官分析法和仪器分析法的优劣势进行了综合评价,最终结合实际给出推荐的嗅味检测方法,进而建议我国水质分析工作者积极借鉴国外嗅味检测技术及培训经验,发展符合国情的嗅味检测技术。  相似文献   

18.
粉末活性炭吸附技术研究   总被引:3,自引:0,他引:3  
粉末活性炭(PAC)用于水的脱色、除臭、除味历史已久。它与粒状活性炭(GAC)相比,主要优点是设备投资省,价格较便宜,吸附速度快,对短期及突发性水质污染适应能力强,故英、美、日等国至今仍广泛应用。但与GAC相比,PAC吸附能力往往得不到充分发挥,影响了它的处理水平和经济效果。PAC的投加点、投加量、投加方式等,看起来似是一般技术问题,不难解决,但实际上涉及PAC与水混合程度和接触时间,絮凝体干扰和PAC与絮凝过程  相似文献   

19.
高浓度有机物,高NH4+-N的黄浦江原水经预臭氧→高密度澄清池→砂滤→后臭氧→生物活性炭组合处理工艺后,水质明显优于传统处理工艺.其中臭氧生物活性炭部分对CODMn(高锰酸盐指数)和NH4+-N的去除率分别达到30.4%和18.9%.由于预臭氧相对预氯化能更好地发挥其氧化助凝作用,组合工艺中常规工艺部分对CODMn和NH4+-N的去除率分别达29.6%和81.0%,而传统工艺对CODMn和NH4+-N的去除率仅分别为22.3%和61.5%.考察了2种工艺出水藻毒素,溴酸盐浓度、三卤甲烷生成潜能以及相对分子质量分布等指标,表明组合处理工艺更容易去除小分子有机物(臭氧生物活性炭部分对小于1kD的有机物去除率大于70%),三卤甲烷生成潜能比传统工艺降低41%,且藻毒素和溴酸盐指标均低于我国饮用水标准.由于组合处理工艺能基本去除NH4+-N,可以采用自由氯消毒用以解决传统氯胺消毒带来的亚硝胺等消毒副产物风险和氯胺的气味问题.在高温季节组合工艺澄清池中出现藻类大量生长的现象,可能与臭氧持续消毒时间较短有关,可通过联合预臭氧和预氯化工艺对组合处理工艺中预处理方式进行改造.  相似文献   

20.
主要采用活性炭吸附法和高锰酸钾预氧化法对某运河水的致嗅物去除工艺进行了研究。研究表明粉末活性炭最佳投加量是50mg/L,此条件活性炭吸附平衡时间为30min;高锰酸钾最佳投加量为3mg/L,这样有助于保持运河水体的平衡,避免对微生物产生影响;两种方法均能有效地去除水中的嗅味,使嗅阀值由42降至23以下,明显改善了水的嗅味问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号