首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
一种基于粒子群优化的极限学习机   总被引:2,自引:0,他引:2  
极限学习机(ELM)是一种新型的前馈神经网络,相比于传统的单隐含层前馈神经网络(SLFN),ELM具有速度快、误差小的优点.由于随机给定输入权值和偏差,ELM通常需要较多隐含层节点才能达到理想精度.粒子群极限学习机算法为使用粒子群算法(particle swarm optimization,PSO)选择最优的输入权值矩阵和隐含层偏差,从而计算出输出权值矩阵.一维Sinc函数拟合实验表明,相比于ELM算法和传统神经网络算法,粒子群极限学习机算法依靠较少的隐含层节点能够获得较高精度.  相似文献   

2.
基于极限学习机(ELM)和粒子群优化(PSO)算法,建立一个新型排水管道结构性状况评价模型。采用PSO算法优化ELM中的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的分类精度偏低的问题。以上海市洋山保税港区排水管网为例,对分类器模型进行训练测试,并与ELM分类结果进行对比分析。结果表明,PSO-ELM算法以较少的隐含层神经元节点获得更高的分类精度,参数优化提高了模型拟合能力,对于城市排水管道结构性状况分类、判断具有可行性和有效性。  相似文献   

3.
针对网络入侵检测准确率低、误报率高的状况,通过理论分析与仿真实验,提出一种利用粒子群优化的极限学习机入侵检测算法.该算法利用粒子群算法优化核极限学习机的核参数,采用学习能力和线性组合泛化能力强的全局性核函数,形成多核极限学习机,可以有效提高单核极限学习机分类器的性能.通过仿真实验对其性能进行了对比分析,结果验证了该算法的有效性.  相似文献   

4.
针对网络入侵检测准确率低、误报率高的问题,本文提出了一种基于粒子群优化和极限学习机的入侵检测算法。粒子群优化算法(PSO)是一种群智能算法,核极限学习机(KELM)是一种学习速度快、泛化能力强的经典核机器学习的方法,但是极限学习机对核函数及参数的选择直接影响它的分类性能。本文算法中利用粒子群算法优化核极限学习机的核参数,采用学习能力强且线性组合泛化能力强的全局性核函数,形成了多核极限学习机,可以有效提高单核极限学习机(ELM)分类器的性能。最后通过实验对算法性能做了对比分析,实验结果验证了本文算法的有效性。  相似文献   

5.
极限学习机初始参数具有随机性,容易导致其对高分辨率遥感影像的分类结果出现局部最优现象.为了解决上述问题,提出了一种基于量子粒子群优化核极限学习机的遥感影像分类方法.该方法利用量子粒子群算法对核极限学习机的核参数与正则化参数进行优化,根据参数优化后的结果构建量子粒子群优化核极限学习机的遥感影像分类模型(QPSO-KELM).通过实验对比了SVM、KELM、PSO-KELM、QPSO-KELM这几种分类方法对高分二号遥感影像数据的分类精度与效率.结果表明:QPSO-KELM的分类精度、运行速度均优于其他几种分类方法,该方法能有效提取遥感影像上的地物要素信息.  相似文献   

6.
本文针对过程神经元网络(Process Neural Network,PNN)模型学习参数较多,正交基展开后的梯度下降算法初值敏感、计算复杂、不易收敛等问题,结合极限学习机(Extreme Learning Machine,ELM)的快速学习特性,提出了一种新型的极限学习过程神经元网络.学习过程中摒弃梯度下降算法的迭代调整策略,采用Moore-Penrose广义逆计算输出权值矩阵.同时为弥补极限学习机由于随机赋值造成的不足,利用粒子群算法(Particle Swarm Optimization,PSO)良好的全局搜索能力进行模型参数优化,获得紧凑的网络结构,提高了模型泛化能力.仿真实验以Henon混沌时间序列和太阳黑子预测为例,验证了网络的有效性.  相似文献   

7.
为提高电力负荷预测的准确性,提出蝙蝠算法优化极限学习的电力负荷预测模型.首先收集电力负荷历史数据,然后采用蝙蝠算法对延迟时间和嵌入维以及极限学习的隐含层结点数目进行优化,利用电力负荷历史数据进行重构,最后采用最优隐含层结点数目的极限学习机建立电力负荷预测模型,并采用具体数据仿真测试.实验结果表明:模型建立了整体性能优异的电力负荷预测模型,提高了电力负荷的预测精度.  相似文献   

8.
针对传统神经网络预测模型预测结果准确性低且存在大量无效迭代的问题,提出了自适应权重粒子群神经网络交通流预测(PSOA-NN)模型。首先根据待预测点的上下游观测点数和历史数据,随机初始化若干组模型参数并计算每组参数对应粒子的适应度;然后采用改进的sigmoid函数替代原有模型中的固定惯性权重,并根据其中适应度变好的粒子更新粒子速度和位置,一直迭代到粒子适应度小于预设值为止;最后将满足条件粒子对应的模型参数应用到神经网络模型,根据实时交通流数据预测出15min后的数据。仿真结果表明,使用PSOA-NN模型,可使得在同等预测误差范围内收敛速度提升0.6~1.7倍。  相似文献   

9.
针对负荷预测过程中特征量难以确定以及极限学习机(ELM)存在因随机产生的初始权值和阈值导致输出稳定性低的问题,提出了基于格拉姆施密特正交化与皮尔逊相关性分析相结合的特征选择方法(GSO-PCA)和改进灰狼算法(IGWO)优化ELM的短期电力负荷预测模型(IGWO-ELM)。对两种不同类型的特征分别使用GSO算法和PCA进行优选,并根据平均绝对百分比误差(MAPE)确定最优特征集,与传统的经验特征选择、最大互信息系数特征选择、随机森林特征选择比较,GSO-PCA特征选择的MAPE分别降低了1.3%、0.55%和0.83%,验证了其优越性;将Tent混沌映射和粒子群优化算法(PSO)融入到灰狼优化算法中,得到IGWO,并利用两种典型的测试函数对IGWO性能进行测试,证明了其具有更强的寻优能力;使用IGWO算法对ELM的初始权值和阈值进行动态优化,建立IGWO-ELM短期负荷预测模型。将拟合优度检验系数、平均绝对误差、均方根误差和MAPE作为评价指标,结合实例分析,与传统的模型进行比较。仿真结果表明:所提预测模型得到的4个评价指标分别为0.997 8、54.90 kW、72.02 kW和1....  相似文献   

10.
基于机器学习理论开展说话人识别的研究取得了很大进展,在基于核极限学习机(kernel extreme learning machine,KELM)和梅尔倒谱系数(mel-frequency cepstral coefficients,MFCC)说话人识别研究基础上,通过主成分分析算法(principal component analysis,PCA)对MFCC进行降维优化、粒子群优化算法(particle swarm optimization,PSO)对KELM初始输入参数进行优化开展基于PSO和PCA融合优化KELM说话人识别算法研究。改进后的算法在MATLAB平台上仿真通过,并与MATLAB语音工具箱提供的神经网络和支持向量机说话人识别算法做了性能对比分析。仿真研究结果表明:通过PSO和PCA融合优化改进的KELM,初始输入参数可以任意确定并且不需要迭代更新,并能有效克服因初始权重随机确定导致的性能不稳定,进一步提高分类匹配和运算速度,具有很好的推广应用价值。  相似文献   

11.
为了对人参价格进行预测,分析了影响人参价格因素,通过K-fold交叉验证方法,利用粒子群算法对支持向量机的惩罚参数c和ggamma值进行寻优,建立起2010年1月~2011年12月林下参的价格预测模型.利用粒子群算法优化惩罚参数c为3.6974,利用radial basis function核函数的SVM(Support Vector Machine)对预测集1的预测相关系数为97.316%.  相似文献   

12.
预测柴油机燃烧产生的纳米级微粒是减少空气污染的有效方法之一,为车辆颗粒物(particulate matter, PM)的排放监管与控制提供支持,协助标定工程师制定严格的排放法规。采用气缸压力传感器测量柴油机在不同行驶工况下的气缸压力,利用主成分分析(principal component analysis, PCA)方法提取前4、7、10主成分作为神经网络的训练输入,粒径为7~990 nm的颗粒物浓度作为模型的输出,分析不同工况下气缸压力主成分贡献率对纳米颗粒的预测效果。结果表明:利用较少的主成分即可代表不同工况下的缸压燃烧特性;当主成分贡献率达到91.57%时,粒径为7~990 nm的颗粒物浓度试验数据与模型预测的平均绝对误差为90.74 cm~3,均方根误差为1.612×10~4 cm~3,回归系数R~2达到0.95,预测精度较高。因此,利用气缸压力预测柴油机PM的排放是一种可行方案。  相似文献   

13.
为了对股票价格进行准确、快速的在线预测,提出一种在线核极限学习机算法(OL-KELM)的股票价格预测模型.首先收集股票价格数据,采用相空间重构理论建立学习样本,然后将学习样本输入在线核极限学习机中进行学习,建立股票价格预测模型,最后对国药股份(600511)股票收盘价进行仿真实验.结果表明,相对于其他股票价格预测模型,OL-KELM提高了股票价格预测的准确性,可以准确地刻画股票价格的变化趋势.  相似文献   

14.
研究了磨矿时间、干矿质量分数和充填率对锡石多金属硫化矿磨矿技术效率的影响.结果表明,在最优的磨矿参数条件下,即磨矿时间为8min、干矿质量分数为65%、充填率为42%时,锡石和硫化矿二元结构所对应的磨矿技术效率最佳.通过Matlab的广义回归神经网络(GRNN)计算程序建立了一种磨矿技术效率预测模型,利用粒子群算法对模型参数进行优化,并通过试验验证了模型的适用性和可靠性.  相似文献   

15.
针对粒子群算法收敛能力不足和易陷入局部最优的问题,提出了一种基于侦察学习策略的新型粒子群算法。 算法首先利用拓扑结构构建粒子种群,其次采用联合因子均衡算法的局部搜索能力和全局搜索能力,并通过侦察学习策略改进算法的速度和位置公式进而产生候选解;Wilcoxon 秩和检验结果和CEC2017 基准函数检测结果表明,新型粒子群算法的收敛能力,最优解精度以及算法稳定性更好,说明算法性能得以提升。  相似文献   

16.
肖会敏  马彩娟 《河南科学》2013,(12):2190-2193
智能训导系统(ITS)以提高学习者学习自主性,实现个性化的学习过程为目标.学习者的学习偏好根据学习者本身的属性,如学习目的,认知能力等变化.因此,为所有学生设计统一的学习路线已不能很好满足单个学习者的学习需要.首先将学习者进行特征聚类,然后将每个学习者作为一个粒子,将其在学习过程中的路径选择和评价值作为其空间代表值,使用粒子群算法进行个性化学习路径寻优,并通过实验证明其有效性.  相似文献   

17.
智能交通运输系统是目前国际公认的解决交通拥堵、提高运行效率的最佳途径,交通流的实时、准确预测是智能交通运输系统的核心技术之一;在对目前几种常见的交通流预测模型的基础上,提出一种基于微粒群算法的组合预测;新方法充分考虑了各种算法的优点,并结合重庆市某道路进行实证分析.  相似文献   

18.
基于特征集的选择、核函数参数的优化对支持向量机(SVM)模型的预测性能有着重要的影响,提出了一个粒子算法-支持向量机(PSO-SVM)模型.该模型采用PSO对特征集和核函数参数同时进行优化,从而提高SVM模型的预测结果.将所提出的PSO-SVM模型应用到财务危机预警中,取得了较佳的预测结果.  相似文献   

19.
将ELM应用到蛋白质二级结构模型的训练中,在此基础上提出了基于概率的合并算法(probability-based combining,PBC),用该算法预测结果的合并.根据生物学中关于蛋白质二级结构的特征提出了预测结果的Helix-后处理(Helix-post-processing,HPP)算法,对合并后的预测结果进行有效的后处理,从而进一步提高预测结果的准确率.分别在CB513和RS126两个数据集上进行了实验,实验结果表明,预测结果的准确率是令人满意的,尤其是实现了训练时间上的显著缩短.  相似文献   

20.
本文在对微粒群算法进行改进的基础上,提出了基于数据挖掘关联规则的微粒群算法,理论分析和仿真结果表明该算法是有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号