首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用缺/厌氧段不同碳源投加比的倒置A2/O工艺处理低C/N城市生活污水,重点研究缺/厌氧段不同碳源投加比对工艺脱氮除磷的影响,并探讨其机理.缺/厌氧段碳源投加比为100%∶0%(工况Ⅰ)、70%∶30%(工况Ⅱ)、50%∶50%(工况Ⅲ).结果表明:静态实验,碳源投加比对3个工况反硝化过程影响较大,对硝化过程影响较小,TP浓度在厌氧段变化明显,且与细胞内物质PHB、聚磷和糖原的代谢变化呈现良好的相关性;倒置A2/O小试试验,不投加碳源及3个工况条件下好氧段的MLVSS/MLSS分别为0.71、0.70、0.66和0.68,对COD和NH+4-N的去除效果影响较小,TN去除率分别为67.5%、83.8%、81.4%和74.1%,TP去除率分别为55.8%、66.4%、85.6%和73.4%;活性污泥中微生物群落变化与工况条件改变有关,COD物质流分析表明不同工况在碳源利用上没有明显差异.小试试验验证了静态实验,工况ⅡMLVSS/MLSS最低,TN和TP去除效果较好.合理分配倒置A2/O工艺中缺/厌氧段碳源投加量,是提高脱氮除磷效果的较理想方法之一,试验结果可为污水处理厂的升级改造和新建污水处理厂有关分段进水设计工艺提供依据.  相似文献   

2.
在传统SBR工艺中,应用一种新型的纳米活性碳纤维悬浮填料,考察其对污水的脱氮除磷效果,并确定其最佳运行条件.结果表明:以进水30min—曝气4h—搅拌2h—沉淀1h—出水30min—闲置30min为最佳运行工况,在此工况运行时,进水NH3—N(氨氮)浓度为16.2~31.8 mg/L,出水NH3—N浓度为0.22~1.55 mg/L,NH3—N(氨氮)去除率为98.6%~95.1%;进水TN(总氮)为19.8~39.1mg/L,出水TN为5.94~13.68mg/L,TN去除率为70%~65%;进水TP(总磷)为3.2~4.5 mg/L,出水TP为0.46~1.13 mg/L,TP去除率为85.6%~75%,系统有较好的脱氮除磷效果,同时还存在同步硝化反硝化过程,以及较好的反硝化除磷功能.  相似文献   

3.
低碳氮比生活污水由于碳源不足,采用传统A/O工艺处理难以出水达标.采用改进的ABR-生物接触氧化工艺对低碳氮比污水进行实验,通过优化运行参数,合理调配碳源,提高碳源利用率,确定了不同m(COD)/m(N)条件下该工艺对污水的处理效果.研究结果表明:改进的ABR-生物接触氧化工艺能有效提高碳源利用率和脱氮效率;在水力停留时间为10h,混合液回流比为2.5,温度为30℃时,系统碳源利用率和TN去除率达到最高;在不同m(COD)/m(N)条件下,TN去除率随着m(COD)/m(N)的减小而迅速降低.当进水m(COD)/m(N)为2~4时,TN去除率低于60%,处理效果不理想:当进水m(COD)/m(N)约为5时,TN去除率达到71.3%,出水TN质量浓度小于20 mg/L,满足排放标准要求;当m(COD)/m(N)为6~7时,TN去除率大于80%,出水TN质量浓度小于15 mg/L.  相似文献   

4.
目的研究厌氧-缺氧-好氧(A2O)工艺对城市污水的去除特性.为已建污水处理厂的提标改造工程提供便于实施的工艺.方法将A2O工艺与生物膜法结合,通过向反应器好氧池中投加聚氨酯流化填料强化脱氮除磷效率.结果经A2O工艺处理的系统出水COD质量浓度为33.1 mg/L,NH+4-N质量浓度为4.56 mg/L,TN质量浓度为14 mg/L,TP质量浓度为0.43mg/L,好氧区对于TN的去除最高可达系统TN去除率的14.2%,好氧区内TN的流失说明系统中出现了明显的同步硝化反硝化现象.城市污水出水水质达到《城镇污水处理厂综合排放标准》一级A标准.结论 A2O工艺对于水质水量的变化具有较强的抗冲击负荷能力,投加填料后,即使在进水水质波动很大的情况下,系统对于水中污染物仍能保持很高的去除率,出水水质稳定.  相似文献   

5.
硝化液回流比对水解-A/O工艺脱氮效果的影响   总被引:2,自引:0,他引:2  
以低碳氮比城市污水为处理对象,在生产性试验规模上,研究不同硝化液回流比情况下水解-A/(缺氧-好氧)O工艺脱氮效果,并以相对小时去除量为评价量,讨论回流比对脱氮效果的影响.结果表明:水解-A/O工艺对COD,TN,NH4+-N,TP的平均去除率分别达到84.0%,64.2%,98.2%和73.2%,出水除TP和SS外,COD,TN以及NH4+-N都达到了GB18918—2002的一级A标准;在高硝化液回流比工况下,工艺运行效果更好;在硝化液回流比为200%的工况下,该工艺系统和水解池出水COD,NH4+-N,TN及TP比硝化液回流比为100%时分别低8.90,0.07,3.74,0.58mg/L和25.40,6.22,4.09,1.46mg/L.通过物料衡算,采用相对小时去除量的比值作为评价量,评价结果表明:在较高硝化液回流比条件下,水解池对污染物的去除能力增强,减轻了A/O生物池的去除负荷,进而增强了整个工艺对污染物的去除能力.  相似文献   

6.
采用中试规模试验,利用物质平衡分析方法,追踪碳源在各个季节不同工艺条件下的分配和利用情况,以求掌握控制碳源分配的关键性参数,从而建立基于碳源利用的污水厂优化运行模式.在原水年均COD,NH4+-N,TN和TP浓度分别为129,25.6,31.5和3.38mg/L,C/N值和C/P值分别为4.3和39.5的条件下,冬季宜采用倒置A2/O工艺,春季宜选用改良型A2/O工艺,夏季宜选用预缺氧+倒置A2/O工艺,秋季宜选用低氧/常氧交替的预缺氧+倒置A2/O工艺,此时出水带走的COD占系统输入总量的26.1%~29.4%,同化COD比例为27.5%~36.2%,直接好氧氧化的COD比例为4%~22.2%,用于反硝化脱氮的COD比例为14.8%~33.6%,用于聚磷菌超量储磷的COD比例为3.05%~6.9%,出水除总磷指标外,可以达到GB 18918-2002一级B标准.碳源分配的优劣可以作为污水厂工艺筛选和参数调整的重要依据.  相似文献   

7.
目的研究组合工艺"缺氧SBR-UASB-好氧SBR"处理高COD、高氨氮、低BOD/COD晚期垃圾渗滤液的可行性,提供一种处理晚期垃圾渗滤液经济、有效的模式.方法在500%回流比下联合启动反应器,系统进水量保证3L/d,调整最佳运行周期,逐步提高回流比并测定各反应器出水COD、NO3-N、NO2-N、TN、NH4-N.结果当回流比达到2200%,系统对COD、NH4-N、TN的去除率分别为96.30%、92.12%、90.57%,出水COD质量浓度49.52 mg/L,NH4+-N质量浓度2.14 mg/L,总氮质量浓度38.71 mg/L.回流比的提升导致系统硝化类型的改变.结论最佳工艺参数下,经由组合工艺处理后出水满足《生活垃圾填埋场污染控制标准》(GB16889—2008)规定的直接排放标准.回流比的改变导致亚硝化菌的比增长速率μAOB和硝化菌的比增长速率μNOB比值发生变化,系统硝化类型从短程硝化向全程硝化过度.  相似文献   

8.
目的研究反硝化聚磷菌的富集及菌株反硝化除磷特性,丰富反硝化聚磷菌的菌种,为今后反硝化脱氮除磷技术的实际应用提供参考.方法利用活性污泥为基质快速富集以NO_3~-作为电子受体的反硝化聚磷菌,并用专性培养基于稳定运行的A~2SBR反应器中分离得到2株高效反硝化聚磷菌N4. 3和N4. 1,对两株菌的反硝化除磷效能进行研究.结果在两阶段驯化条件下,共历时36天反硝化聚磷菌富集成功,反硝化除磷系统出水COD、TP和NO_3~--N的质量浓度分别为24. 52 mg/L、0. 37mg/L和2. 64 mg/L; N4. 3和N4. 1均具有PHB及异染颗粒,且革兰氏染色均呈阳性; N4. 3和N4. 1硝态氮去除率分别为95. 83%、96. 30%,总磷去除率分别为88. 34%、91. 42%.结论 A~2SBR系统中反硝化聚磷菌富集效果较好,并且分离出两株具有较高的反硝化吸磷能力的菌株.  相似文献   

9.
我国北方地区污水温度的季节性变化对城镇污水处理工艺的运行效果有很大影响,尤其是冬季低温状态下,严重威胁着系统出水的达标排放.对污水处理系统效能随温度季节性变化规律的了解,将有助于应对措施的制定和实施.以常规厌氧-缺氧-好氧(A2/O)生活污水处理工艺的运行为基础,考查了水温从23℃分阶段下降为18、14、11℃时的处理效能.结果表明,在HRT 10 h,进水COD、NH3—N、TN和TP平均值分别在275、46、50和5.3 mg/L时,当温度从23℃下降到11℃,A2/O系统出水COD、TP分别从28、0.2 mg/L升高到40和0.3 mg/L,满足GB18918-2002要求的Ⅰ级A排放标准,但NH3—N和TN残留量高达7.58和16.58 mg/L,不能满足Ⅰ级A的排放标准.因此,在低温条件下对A2/O工艺的管理,重点应放在系统硝化与反硝化功能的强化方面.  相似文献   

10.
对比研究了常规与高MLSS(混合液悬浮固体浓度)条件下,A~2/O(厌氧—缺氧—好氧)工艺对低碳城市污水中有机物的去除效率和脱氮、除磷的效率.结果表明:常规MLSS条件下,由于废水中碳源不足影响了缺氧段的反硝化效率,导致部分时段出水总氮质量浓度超标.提高A~2/O工艺的MLSS达到(5 000±500)mg/L,有机物去除效果基本不变,但出水总氮质量浓度明显下降(均值达到9.5mg/L),且好氧段硝化效果轻微增强.但受高MLSS条件下污泥龄长导致污泥产量低的影响,除磷效果下降,出水总氮升高.继续降低好氧段DO(溶解氧)浓度,并不会影响高MLSS条件下A~2/O工艺的硝化和反硝化效果.  相似文献   

11.
前置反硝化生物滤池具有良好的脱氮性能,回流比是影响其脱氮性能的重要影响因素.调节回流比参数,考察回流比分别为100%、200%、300%时的工艺参数条件下,前置反硝化生物滤池对COD、NH3—N、NO3-—N、TN的去除效果.试验表明回流比对反应器中COD、NH3—N、NO3-—N、TN均有一定的影响,对TN的去除影响最大.在一定的范围内(100%~200%),增加回流比有助于提高系统对污染物的去除,但当回流比过大时(300%),系统出水水质下降.确定最佳回流比为200%,该工况下系统出水COD、NH3—N、TN平均质量浓度分别为28.45、2.27、12.45 mg/L.  相似文献   

12.
以经碱处理过的玉米芯作为固体碳源处理低C/N比污水,考察玉米芯为0,2.5,5.0和7.5g时系统中氨氮、硝态氮、亚硝态氮和总氮的去除率﹒实验结果表明:当玉米芯投加量为5.0 g/200 ml时,系统中亚硝态氮的浓度低于0.02mg/L且没有亚硝态氮的积累;出水NH3-N,NO3-N和TN去除率分别为93%~95%,92%~96%和93%-97%﹒通过考察不同玉米芯投加量对出水COD浓度的影响,可以看出玉米芯投加量过多会造成二次污染的现象﹒因此,在强化低C/N污水的技术中,应将固体碳源投加量控制在合适范围内,对于C/N比为1.5的污水,固体碳源的最佳投加量为5.0 g/200 ml﹒  相似文献   

13.
周娟  丁勇  黄霞  朱明石  周少奇 《贵州科学》2022,(5):65-68+90
考察了改良一体化MBR工艺在农村污水处理厂的应用情况。展开了对改良一体化MBR工艺工程运行效果的研究,结果表明,设计进水水质指标COD、NH4-N、TN、TP分别为80.89~133.56 mg/L、10.23~23.56 mg/L、16.13~32.12 mg/L、1.21~4.01 mg/L,设计出水水质指标分别为≤30 mg/L、≤5 mg/L、≤20 mg/L、≤5 mg/L,去除率分别为≥85%、≥90.97%、≥55.81%、≥84.71%,其出水水质达到《城镇污水处理厂污染物排放标准》(GB18918—2002)的一级A标准。  相似文献   

14.
目的研究碳源种类对双泥生物膜亚硝化反硝化除磷工艺脱氮除磷的影响程度.方法以甲醇、淀粉、葡萄糖、乙酸钠、丙酸钠、污泥水解酸化液六种碳源模拟废水,通过间歇运行方式对不同碳源的反硝化除磷系统的运行状态进行研究.结果六个系统中,淀粉的COD去除率最小,为45%,其余系统相差不大,去除率最大的是污泥水解酸化液,为88%;缺氧结束时系统出水PO_4~(3-)-P质量浓度分别为2.24 mg/L、3.00 mg/L、3.81 mg/L、1.40 mg/L、2.46 mg/L、1.18 mg/L;各系统每克M LSS的亚反硝化速率分别为1.27 mg/(g·h)、1.15 mg/(g·h)、1.58 mg/(g·h)、2.91 mg/(g·h)、2.60 mg/(g·h)、2.03 mg/(g·h).结论碳源种类对双泥生物膜亚硝化反硝化除磷系统有很大影响,淀粉类大分子碳源不利于反硝化除磷,乙酸钠类小分子物质有利于磷的释放和吸收.  相似文献   

15.
考察了改良A/A/O工艺在城镇污水处理厂中各指标的运行情况。对该厂进行了工艺调试和优化,结果表明,设计进水水质指标COD、NH4-N、TN、TP、SS分别为80~280 mg/L、14~26 mg/L、20~50 mg/L、1~2.5 mg/L、50~140 mg/L,设计出水水质指标分别为≤80 mg/L、≤4 mg/L、≤10 mg/L、≤0.4 mg/L、≤20 mg/L,去除率分别为≥85.7%、≥87.5%、≥57.1%、≥87.5%、≥94.4%,污水的出水水质能达到城镇污水处理厂污染物排放标准中的一级A标准。  相似文献   

16.
为探讨双污泥反硝化除磷技术在处理生活污水时N_2O产生量的影响因素,通过控制进水中化学需氧量(COD)浓度以及不同曝气量,分析了装置内总氮(TN)、总磷(TP)、氨氮(NH_(3~-)N)、亚硝酸盐氮(NO_(2~-)-N)、硝酸盐氮(NO_(3~-)-N)含量,研究了不同控制条件下N_2O的释放量,并对不同DO浓度下NH_3和NO_(2~-)-N完全降解所需时间进行了探讨。结果表明:1)硝化阶段DO浓度为3 mg/L时释放的N_2O浓度最低;2)随进水COD浓度的增加,反应完全后装置内TN浓度依次降低、TP浓度依次增大;3)反硝化阶段,进水COD浓度为300 mg/L时,释放的N_2O浓度达到最大值(5.34 mg/L)。  相似文献   

17.
针对高氮磷含量污水处理,以钙镁合剂利用化学沉淀法对滤液进行除磷脱氮实验。分析钙镁合剂除磷脱氮的机制,考察NaOH投加量和钙镁药剂复配投加量的影响,得到最佳工艺条件。结果表明:实验中NaOH、MgCl_2和CaCl_2的质量浓度分别为150、60和40 mg/L时,污水中总磷(TP)去除率达到90%,总氮(TN)和NH_3-N去除率达到25%;动态小试试验中选取NaOH、MgCl_2和CaCl_2的质量浓度分别为105、48和24 mg/L时,TP去除率达到90%,TN和NH_3-N去除率达到30%;Ca~(2+)和Mg~(2+)在一定条件下与PO~-_4、NH~+_4等基团发生反应,生成磷酸铵镁以及羟基磷酸钙沉淀,从而达到除磷脱氮效果。  相似文献   

18.
A_2N-SBR双污泥反硝化生物除磷系统效能分析   总被引:8,自引:0,他引:8  
采用生活污水和A2N-SBR工艺对反硝化除磷过程进行了研究.在进水COD浓度为325mg/L,磷浓度为9.1mg/L,氨氮浓度为65mg/L的条件下,出水氨氮浓度和磷浓度分别为3.3mg/L和0.17mg/L,氮和磷的去除率分别为95%和98%.进水C/N比对A2N-SBR反硝化除磷体系的除磷和脱氮效率都有重要影响,在进水C/N比为5时获得了最佳的脱氮和除磷效率;当C/N比小于5时,氮和磷的去除率都有大幅度的下降;当C/N比大于5时,氮的去除率未受到影响,而磷的去除率却有所下降.  相似文献   

19.
试验以小试规模的传统A/A/O工艺处理某城市污水处理厂的进水为研究对象,在污泥回流比为100%的条件下,探讨了混合液回流比为100%、200%、300%时系统对反硝化除磷脱氮效果的影响。结果表明,随着混合液回流比的增加,系统对TP的去除呈现出先升高后降低的趋势,在混合液回流比为200%时,TP的去除率达到93.3%,出水TP的平均值为0.47mg/L;COD的去除基本不随混合液回流比的变化而变化,始终保持了良好的去除效果,平均去除率达到94.6%,出水平均值为18.2mg/L;系统对TN的去除效果较差,这可能与缺氧区较短的水力停留时间有关,但是,在混合液回流比为200%时TN的去除率相对稳定。所以,在本试验条件下以回流比为200%时的除磷脱氮效果最佳。  相似文献   

20.
为了解决A2O工艺生物脱氮除磷不稳定、出水氮磷难以达标的问题,在A2O工艺好氧段添加悬浮式生物填料以保证高质量浓度的硝化细菌及高硝化率.考察不同COD与总氮质量浓度比x、旁流比对工艺脱氮和除磷的影响.此外,在COD与总氮质量浓度比较低条件下对装置进行了改装,即在厌氧段前添加了一段预缺氧段,使其达到深度脱氮除磷的效果.试验结果表明:当进水x=3.6~8.1,COD,TN和TP去除率根据硝化液回流比的不同而不同,x和硝化液回流比越高,出水硝态氮越低;当x为8.1,硝化液回流比为300%时,脱氮除磷效果最好,其出水硝态氮质量浓度仅为4.23 mg/L.当COD与总氮质量浓度比较低时,TP的去除率较低,当x>4.5时,磷的去除率几乎为100%.A2O系统中生物膜硝化作用占总硝化作用的81.6%,而活性污泥硝化作用只占18.4%.这说明生物膜具有良好的硝化作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号