首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选择8种大孔吸附树脂,比较其对莲房黄酮的吸附和解吸附效果.在静态吸附试验的基础上,筛选出AB-8树脂进行动态吸附试验.实验结果表明,大孔吸附树脂AB-8对莲房黄酮的最佳层析条件为:样液总黄酮液浓度为1.5mg·mL-1,上样流速3BV/h,调节样液pH为3.5上样,以70%的乙醇浓度洗脱,洗脱流速2BV/h.  相似文献   

2.
用水提醇沉法提取龙胆粗多糖,优化AB-8大孔吸附树脂纯化龙胆多糖的工艺,并研究各因素对AB-8大孔吸附树脂对龙胆多糖的吸附与解析效果,得到龙胆多糖的最佳纯化工艺条件。最佳纯化工艺为:上样浓度为4 mg/m L,上样流速为4 BV/h,上样量为8 BV,解析流速为1 BV/h,解析体积为225 m L,解析液为30%乙醇。经过纯化后多糖纯度从43.94%提高到了78.63%。经过AB-8大孔吸附树脂的提纯,多糖的纯度提高为原来纯度的1.79倍,所以AB-8大孔吸附树脂可用于纯化龙胆多糖。  相似文献   

3.
考察了大孔树脂对紫苏茎提取液中总黄酮的吸附性能,优化了吸附工艺参数。首先对D-101、AB-8、DM130、ADS-7和ADS-17共5种大孔树脂的静态吸附量和解析率进行了实验,选择AB-8为最佳吸附树脂;静态吸附表明,3h内吸附即可达到平衡。还考察了上样速率、上样质量浓度、洗脱液乙醇质量分数和洗脱速率对分离的影响,结果表明优化的条件为:上样速率为1BV/h,上样质量浓度为0.15mg/mL,洗脱液乙醇质量分数为70%,洗脱流速为2BV/h。在此条件下,总黄酮洗脱率为93.56%,总黄酮纯度可提高4.5倍。  相似文献   

4.
本研究以炮制的干天麻为原料,水提醇沉法提取多糖,大孔吸附树脂纯化,比较了八种大孔树脂(AB-8、D101、LX-17、D301、NKA-9、S-8、LSD-001、ADS-7)对天麻多糖静态吸附-解析效果,筛选出最佳纯化树脂,再研究最佳树脂纯化天麻多糖工艺参数.结果为:八种大孔吸附树脂中D101对天麻多糖的纯化效果最好.样品液浓度、温度、上样速度,洗脱用乙醇浓度、洗脱流速及洗脱体积等因素均对D101树脂吸附分离天麻多糖有影响.所得的最佳纯化工艺为:20℃是较适宜的吸附温度,上样速度1BV/h,上样浓度4mg/mL,进行吸附;吸附饱和平衡后,用解析液浓度60%乙醇,解析速率2BV/h,解析液体积3BV进行动态洗脱.通过该工艺天麻多糖的纯度提高到了65.7%,表明了大孔树脂D101对天麻多糖具有较好的纯化效果.  相似文献   

5.
利用大孔树脂分离纯化黑米花色苷,得到最佳纯化条件.在最佳提取条件下得到黑米花色苷粗提液,利用AB-8大孔树脂对其进行纯化,研究各个因素对吸附率和解吸率的影响.静态吸附平衡时间为4 h,吸附液pH值为2.0,解吸时间为1.5 h,60%乙醇洗脱效果最佳.动态吸附上样液质量浓度0.5 mg/mL、流速为1.0 mL/min时吸附效果最好,解吸流速为1.0 mL/min、60%乙醇洗脱剂解吸效果最佳.在最佳纯化工艺条件下纯化后的花色苷质量比提高了大约7倍左右,说明AB-8大孔树脂对黑米花色苷具有较好的分离纯化效果.  相似文献   

6.
以树莓干果为原料,通过比较HP-20、D101、X-5、LX-68、AB-8、XDA-6、XDA-8、D201大孔树脂对树莓粗黄酮静态吸附率和解吸率的影响,筛选出适宜分离纯化树莓黄酮的大孔树脂为XDA-6树脂.结合静态与动态吸附解吸实验,得出用XDA-6大孔树脂分离纯化树莓黄酮的最佳工艺.将树莓粗黄酮提取原液作为上样液,以6 BV/h(1 BV为1个柱体积)的流速上样吸附,之后采用60%乙醇作为洗脱剂,以4 BV/h的流速进行洗脱,洗脱剂用量为5 BV.在此纯化条件下所得树莓黄酮质量分数为35.8%,较纯化前提高了1.21倍;干粉质量浓度在0.5 mg/m L时,对DPPH的抗氧化活性从纯化前的62.51%提高到70.36%,对大肠杆菌、金黄色葡萄球菌、棉花枯萎菌、小麦赤霉菌均有一定的抑制作用,纯化后的抑菌效果优于纯化前.  相似文献   

7.
利用AB-8大孔树脂纯化芫荽黄酮,通过静态和动态结合的方法,确定最佳工艺参数.结果表明,静态,吸附平衡时间为3 h,解析平衡时间为1.5 h;动态,上样液质量浓度为1.0 mg/mL,上样液pH值为6.0,上样流速为2 mL/min,洗脱剂质量浓度为70%乙醇溶液,洗脱流速为2 mL/min.在此条件下,AB-8大孔树脂可以较好的分离纯化芫荽中总黄酮.  相似文献   

8.
应用大孔吸附树脂吸附分离技术制备菊苣酸的研究   总被引:2,自引:1,他引:2  
考察了9种大孔吸附树脂对紫锥菊中菊苣酸的吸附分离性能,确定大孔吸附树脂吸附分离菊苣酸的工艺条件。结果表明AB-8树脂对菊苣酸有良好的吸附分离性能,其吸附分离菊苣酸的工艺条件为:质量浓度为3~4mg/mL,pH值为3的菊苣酸原料液以2mL/min的流速上柱吸附,再用6倍量树脂体积 (6BV)的30%乙醇以1mL/min的流速上柱进行解吸。AB-8树脂柱饱和吸附量可达18.0mg/mL,解吸率达90.2%。经AB-8树脂吸附分离,产品纯度达20.2%,纯度比紫锥菊初提物提高了近5倍。  相似文献   

9.
为了优选菝葜多糖的分离纯化工艺,以多糖纯度、多糖出膏率与吸附率等为指标,考察醇沉静置温度、醇沉静置时间与大孔吸附树脂型号等因素,确定菝葜多糖的最佳醇沉工艺与大孔吸附树脂纯化工艺。得到菝葜多糖最佳醇沉工艺为取含生药1.0 g/mL的药液,加入乙醇,使乙醇体积分数达到80%,醇沉1次,室温25 ℃静置12 h,抽滤得醇沉物,70 ℃干燥;纯化工艺为采用AB-8型大孔吸附树脂,用1 BV的2.0 mg/mL(以粗多糖计)的上样液,以2 BV/h的流速上样,再用3 BV的纯水以3 BV/h的流速进行洗脱。结果表明该优选工艺稳定可靠,可用于菝葜多糖的分离纯化。  相似文献   

10.
研究了大孔吸附树脂纯化菟丝子黄酮的方法.以菟丝子总黄酮含量考察纯化后黄酮纯度,对可能影响纯化的因素进行单因素试验,确定纯化的最佳工艺条件为:选用H-103型大孔吸附树脂,吸附液pH值为3~4,洗脱剂浓度60%,动态吸附流速为0.5 ml/min,吸附时间60min,洗脱剂量与树脂比为8.  相似文献   

11.
采用静态吸附-洗脱试验,考察了12种大孔吸附树脂对柴胡地上部分总黄酮的吸附和洗脱效果,从中筛选出最佳的树脂为NKA-II型大孔吸附树脂。利用动态吸附-洗脱试验,对NKA-II型吸附树脂分离纯化柴胡地上部分总黄酮的工艺条件进行了优化,得到最优的工艺参数为:树脂径高比为2∶7,上样质量浓度为0.08 g/mL(每毫升药液相当于生药0.08 g),上样流速为3.0 BV/h,上样量为16 BV,洗脱剂为70%乙醇,洗脱流速为2.5 BV/h,洗脱剂用量为10 BV。工艺放大验证结果表明,在最佳的分离纯化工艺条件下,吸附量、解吸率及干浸膏中总黄酮含量分别为80.46 mg/g、95.72%和65.71%,分离纯化的效果较好。测试了柴胡地上部分总黄酮经纯化后的抑菌活性,结果显示:总黄酮对2种细菌——表皮葡萄球菌(Staphylococcus epidermidis)和鼠伤寒沙门菌(Salmonella typhimurium)的抑菌活性较强,最低抑菌浓度(MIC)均为6.15 mg/mL;对2种真菌——球形马拉色菌(Malassezia globosa)和糠秕马拉色菌(Malassezia fu...  相似文献   

12.
为了探讨大孔吸附树脂纯化鸡血藤中总黄酮的最佳工艺,通过对6种型号大孔树脂的静态实验,筛选出最佳树脂;考察最佳树脂对鸡血藤总黄酮的吸附及洗脱性能,优化工艺参数.结果表明:HZ820为最佳树脂,其纯化总黄酮的优化工艺条件为上样液质量浓度3.31mg/mL,吸附流速4BV/h(1BV为20mL),上样液体积500mL,树脂吸附量达79.31mg/g;以60%乙醇为洗脱剂,洗脱流速3BV/h,洗脱用量5BV,解吸率达92.72%,减压浓缩得鸡血藤总黄酮浸膏,纯度为79.49%.  相似文献   

13.
从葡萄籽中分离纯化原花青素的研究   总被引:5,自引:0,他引:5  
研究了从葡萄籽中分离纯化原花青素的最佳浸提条件,经过正交实验,得出最佳浸提条件:乙醇体积分数60%,提取温度50℃,料液比(g:mL)1:7.AB-8树脂较适合精制原花青素粗提物,最佳的柱分离条件:上样液pH=4,上样液流速2.0 BV/h,体积分数为50%醇溶液洗脱,洗脱流速1.0 BV/h.经AB-8树脂吸附精制,原花青素的纯度可达91.2%.  相似文献   

14.
目的研究大孔树脂分离纯化塞北紫堇总生物碱的工艺条件.方法以盐酸小檗碱为对照品,采用酸性染料比色法,分别考察总生物碱在5种类型的大孔树脂(AB-8、NKA-9、LKY131、HP20、PHD400A)上的吸附和解吸附行为,同时分析了上样液浓度、洗脱液浓度和洗脱量、洗脱流速等参数对分离的影响.结果所比较的5种树脂中,AB-8型大孔树脂对总生物碱分离纯化效果最好,富集能力强,较优富集工艺为:2.0mg/ml上样液浓度、9倍量70%浓度的乙醇溶液洗脱、洗脱流速为2.0ml/min,最大吸附量为160mg/g.结论使用AB-8型大孔树脂对塞北紫堇总生物碱具有较好的纯化作用,可使其纯度提高16.6%.  相似文献   

15.
黑米皮花色苷的大孔树脂吸附纯化研究   总被引:7,自引:0,他引:7  
摘要:比较了5种大孔吸附树脂对黑米皮花色苷( Black Rice Anthocyanins, BRA)的吸附纯化效果,研究了AB-8型大孔树脂对BRA的吸附与解吸特性.结果表明:AB-8大孔树脂对BRA具有较好的吸附和解吸能力,是吸附纯化BRA的最佳树脂类型,其分离纯化BRA的最佳工艺参数为:上柱液pH 值=2,样品质量浓度1.0mg/mL,吸附流速1.0mL/min,以体积分数为70%乙醇为解吸剂,洗脱速度为1.0mL/min. 树脂的重复利用率好,使用5次后吸附率无显著性差异(P0.05),使用7次后,吸附率仅降低2.58%. BRA经AB-8大孔树脂纯化后,花色苷含量提高2.38倍,总抗氧化能力提高3.99倍.  相似文献   

16.
对AB-8型大孔树脂分离纯化中药复方免疫增强剂中多糖的工艺条件进行研究,采用苯酚-硫酸法测定大孔树脂对分离纯化多糖的吸附率、解吸率及影响因素。结果显示:最佳工艺条件为上样液药复方多糖的浓度为5.93mg/mL、速率2BV/h、体积2BV,洗脱液乙醇的体积浓度为50%、速率3BV/h、用量3BV。AB-8型大孔树脂的吸附率、解吸率分别达到71.0%、93.1%,所得多糖含量为79.8%,表明AB-8型大孔树脂对中药复方多糖有较好的分离纯化性能。  相似文献   

17.
目的:考察8种大孔吸附树脂D3520、H103、HPD-100、HPD-700、AB-8、HPD722、S-8、HPD-600对泽兰多糖的纯化效果,以Box-Behnken法优化最佳大孔吸附树脂的最优纯化工艺.方法:以多糖保留率、脱色率、脱蛋白率的加权综合评分为指标,考察大孔树脂、洗脱流速、上样浓度、洗脱剂用量对纯化结果的影响,通过Box-Behnken设计建立响应面模型来优选大孔树脂泽兰多糖的工艺参数.结果:优选的泽兰多糖的大孔树脂纯化工艺为:取HPD-100大孔吸附树脂,泽兰多糖的上样质量浓度为0.03 g/mL,洗脱流速为1.1 mL/min,洗脱体积为40 mL,以此优选工艺纯化后,多糖保留率69.21%,脱色率60.24%,蛋白脱除率75.67%.结论:泽兰多糖的纯化工艺稳定可靠,HPD-100大孔吸附树脂纯化工艺效果良好,适合工业化生产.  相似文献   

18.
以枇杷叶为研究对象,采用大孔吸附树脂对枇杷叶三萜酸的粗提物进行分离纯化。首先对8种大孔树脂进行筛选,然后考察最佳大孔树脂对枇杷叶三萜酸的静态、动态吸附及脱附性能,得到最佳分离纯化的工艺条件:大孔树脂型号为HZ-816,上样流速2 BV/h(1 BV约为32 m L),上样质量浓度0.6 mg/m L,上样体积470 m L,洗脱液乙醇体积分数95%,洗脱流速2 BV/h,洗脱剂的用量为6 BV,由此得到的三萜酸纯度为92.29%。通过比较研究表明大孔树脂分离法优于碱溶酸沉法。  相似文献   

19.
采用溶剂浸提法提取总黄酮,大孔树脂吸附纯化,分光光度法测定总黄酮的含量,正交试验建立沙棘叶总黄酮纯化的优化工艺.结果得出沙棘叶黄酮纯化优化工艺是:选用AB-8型大孔树脂对沙棘叶总黄酮粗制品进行吸附纯化,用浓度为0.20mg/mL,pH=6.0沙棘叶黄酮溶液上样,控制流速为2.0mL/min.选用70%乙醇进行洗脱,用量为柱床体积的4倍,流速为3.0mL/min.经纯化后得精制品1.29g,总黄酮含量为14.89%,比粗制品黄酮含量提高103倍.用此工艺,AB-8型湿树脂饱和吸附量为79.19mg/ml,树脂重复利用8次后,吸附率都在70%以上,仍无明显变化.上述工艺操作简单、方法可靠,产品得率高,说明此工艺可以有效纯化沙棘叶总黄酮,且树脂可重复利用次数多,性能好,适合于沙棘叶黄酮的大规模生产.  相似文献   

20.
AB-8大孔树脂对菱角壳黄酮提取物的吸附性能研究   总被引:5,自引:0,他引:5  
弱极性大孔树脂AB-8用于野生菱角壳提取物中的黄酮类化合物的分离纯化.实验结果表明,AB-8大孔树脂对菱角壳黄酮提取物的吸附在1 h后基本达到平衡,饱和吸附量为89.2 mg/g,最大吸附率为78.4%,当流速为10 mL/min,样品量为0.052 5 g时,用70%的乙醇对菱角壳提取物中黄酮类化合物进行解吸的解吸率为82.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号