共查询到19条相似文献,搜索用时 78 毫秒
1.
随着交通、网络流量监控等应用的涌现,不确定数据流频繁项集挖掘成为近年来的研究热点。通常在不确定数据流中,频繁项集所占的比例较小,导致挖掘中无效操作较多。基于这种情况,提出了一种基于预裁剪的不确定数据流频繁项集挖掘算法Prep-UF-Streaming;该算法,不仅能裁剪掉大部分非频繁项集,提高了算法的平均运行时间;而且能够检测到非频繁项集成为频繁项集的可能性,尽量不丢失频繁项集,从而尽可能地提高算法的性能。 相似文献
2.
发现频繁项集是关联规则挖掘的关键步骤。然而,大多数频繁项集求解算法因需要产生大量候选集而降低了效率。该文在研究概念格和频繁项集关系的基础上,将剪枝概念格PCL模型引入数据库中频繁项集的表示,利用概念间的关系性质,在不丢失信息的同时能有效压缩频繁项集的规模,并提出基于PCL模型的频繁项集求解算法。该算法基于Apriori性质,在构造过程中及时、动态地剪枝,删除与频繁项集求解无关的概念,从而有效地改善了频集挖掘算法的时空性能;实验证实了算法良好的性能。 相似文献
3.
文章在研究基于剪枝概念格的频繁项集表示的基础上,提出了基于多剪枝概念格模型的频繁项集表示与挖掘方法。该方法在多剪枝格基础上进行导出频繁项集的合并,进而获得全局频繁项集,有效地降低了频繁项集表示的规模;理论分析和实验结果表明,该方法能获得满足用户要求的近似所有全局频繁项集。 相似文献
4.
针对当前关于数据流加权最大频繁项集WMFI(weighted maximal frequent itemsets)的研究无法有效地处理频繁阈值和加权频繁阈值不一致情况下WMFI的挖掘问题,提出了完全加权最大频繁项集FWM FI(full w eighted maximal frequent itemsets)的概念.为了减少naive算法在处理滑动窗口下完全加权最大频繁项集挖掘时存在的冗余运算,提出了FWMFI-SW(FWMFI mining based on sliding window over data stream)算法.所提出的算法通过基于频繁约束条件的优化策略减少了naive算法中M ax W优化策略的无效调用次数;采用编辑距离比率作为WMFP-SW-tree的重构判别函数,可以有效减少该树的重构次数.实验结果表明FWMFI-SW算法是有效的,且比naive算法更有时间优势. 相似文献
5.
针对传统数据流频繁项集计算中效率低、内存消耗大等问题,本文采用并行计算的思想设计了一种基于MapReduce的数据流频繁项集挖掘算法,首先,对进行数据分块压缩和传输,其次,将数据频繁项的计算分布在负载均衡的数据节点,可以有效保证数据的执行效率.最后通过一次调度处理合并各个节点产生的频繁项集并进行合并.理论分析和实验对比结果均表明,该算法对于并行处理数据流频繁项集的统计问题是有效可行的. 相似文献
6.
随着数据库规模的增加或支持度阈值的减少,频繁模式的数量将以指数形式增长,FP-growth算法运行的时空效率将大为降低.本文提出一种基于格的快速频繁项集挖掘算法LFP-growth,算法利用等价关系将原来的搜索空间(格)划分成若干个较小的子空间(子格),通过子格间的迭代分解,将对网格P(I)的频繁项集挖掘转化为对多个子格的并集进行的约束频繁项集挖掘.实验结果和理论分析表明,在挖掘大型数据库时,LFP-growth算法的时间和空间性能均优于FP-growth算法. 相似文献
7.
以Apriori算法为例介绍并分析了挖掘最大频繁项集的过程。针对数据流的特点,对数据流中频繁模式挖掘问题进行了研究,提出了一种基于数据流频繁项集挖掘的新的EC算法。 相似文献
8.
频繁项集挖掘是关联规则挖掘算法的核心,数据流的实时、无限及不可逆性给传统数据挖掘方法带来很大挑战.频繁闭项集挖掘为频繁项集挖掘提供了完整且低冗余的结果,是近年来数据流频繁项集挖掘研究的热点之一.介绍了数据流频繁闭项集挖掘的相关概念,并从搜索空间的遍历策略、误差结果控制方式等方面对数据流频繁闭项集挖掘算法进行了分析比较. 相似文献
9.
数据流中一种有效的当前频繁序列挖掘方法 总被引:1,自引:0,他引:1
给出了一种基于滑动窗口挖掘频繁序列算法。该算法给出了ε-近似序列集的定义,利用一种压缩的数据结构GSP-tree来存储和维护整个滑动窗口中各分区的近似序列集,并通过合并各分区的近似序列集来响应用户当前的查询请求。 相似文献
10.
基于多层概要结构的数据流的频繁项集发现算法 总被引:1,自引:0,他引:1
利用一类基于异或运算的两两相互独立的哈希函数族,实现了对多层结构流数据进行"概括"的概要数据结构.应用该多层概要数据结构,实现了面向数据流的多层频繁项集的动态近似查找算法.实验结果表明,该算法以亚线性的时间和空间消耗,在统计意义上达到了几乎100%的查找和估计精确度. 相似文献
11.
本文介绍了关联规则的概念,并通过一个例子说明了关联规则挖掘的一种算法--Apriori算法,指出了数据挖掘未来研究的重点和方向。 相似文献
12.
概念漂移给数据流挖掘工作带来了很大阻碍.经典的SEA算法通过动态裁剪集成分类器的方式有效地捕获到概念漂移.其裁剪集成分类器的策略是直接删除掉一个权值最低的基础分类器,这意味着算法抛弃了一个已经学习了的概念,当该概念再出现时还需再学习,导致算法效率的降低.现提出了一种能够提取旧概念的算法(ECRRC),并给出了存储和提取概念的具体方法.面对概念的重复出现,ECRRC不用再学习就能够完成数据流分类.实验结果表明,ECRRC能够提高数据流分类效率. 相似文献
13.
《中南民族大学学报(自然科学版)》2016,(3):102-106
针对目前海量数据挖掘过程中存在着频繁项集挖掘效率低、冗余项集繁多的问题,提出了改进的频繁模式树和遗传算法(FPGA),该算法鉴于异构数据的差异性特征,采用改进的频繁模式树和基于MapReduce的并行遗传算法搜索最大频繁项集,缩小了搜索范围,提高了挖掘效率.实验结果表明:该算法在时间复杂度方面有了很大提高,与传统的FP_Growth算法相比,具有更好的加速比以及更高的执行效率. 相似文献
14.
基于数组的频繁项目集的挖掘算法 总被引:4,自引:0,他引:4
挖掘关联规则是数据挖掘研究的一个重要方面.然而,目前提出的算法仍存在一些问题,如复杂的数据结构、大量的候选频繁项目集生成等等.本文提出使用了一种简单的数据结构——数组,并提出了基于数组的一种新的频繁项目集的挖掘算法. 相似文献
15.
为减少关联规则挖掘中数据库扫描次数,提出了一种基于准频繁项目集的关联规则挖掘算法———SupposedFrequent,同时给出了候选频繁项目集的产生函数———BGen.最后通过实验证明:在给定最好的准频繁项目集的条件下,只需扫描数据库两次就能产生全部的频繁项目集。 相似文献
16.
17.
有效地进行频繁项挖掘一直以来都是数据挖掘任务中最为重要的组成部分。已有的大部分频繁项挖掘算法在数据项多及支持度低的情况下,算法的效率急剧下降。为了有效地解决此类问题,提出了一种采用双向十字链表结构的频繁项挖掘算法(two-way crossed list for frequent itemsets mining,TCLFI)。极大地降低了搜索空间,加快了频繁项的筛选过程,减少了所需保存的数据项个数,从而降低了时间复杂度,提高了频繁项的挖掘效率。实验通过真实数据集和合成数据集验证了算法的有效性和扩展性。 相似文献
18.
19.
为解决在挖掘频繁项集过程中,因忽略不同项目间的重要程度而导致的挖掘有效性低以及忽略数据的动态更新而造成的挖掘效率低的问题,通过引入新的加权规则,从权值与频数两方面去体现项目间的重要性差异,并通过引入树形结构与关系矩阵提高数据动态变化时频繁项集的挖掘效率。创新性地提出基于动态数据的加权频繁项集挖掘算法weighted dynamic date mining (WDDM)。实验结果表明,WDDM算法较以往算法挖掘效率与有效性显著提高,有利于发现更多有研究价值的信息。 相似文献