共查询到20条相似文献,搜索用时 91 毫秒
1.
2.
文中构建了超分辨率重建图像的一般框架.在对图像模糊的不确定性和复杂性作一定限制条件下,讨论采用最小二乘方规整化方法重建除运动外其它因素引起降质的低分辨率图像;并进一步提出了采用改进的递归最速下降迭代算法实现多帧图像的超分辨率重建.计算机模拟结果表明,该方法具有较好的重建图像质量. 相似文献
3.
针对图像超分辨率重建算法在图像高频信息恢复过程中特征提取不充分、利用效率不高、重建高频细节能力不足等问题,本文提出了一种基于信息蒸馏级联伸缩网络的图像超分辨率重建算法.首先,构建特征可伸缩的信息蒸馏块,通过扩大信息蒸馏中输入信息的特征感受野,以及采用通道注意力提取感兴趣信息,解决了信息蒸馏的图像超分辨率重建非线性映射过程中特征提取不充分的问题;然后,设计级联残差叠加映射块,该块将多个残差块组合在一起,通过将残差结构中的残差部分引出并采用级联叠加的方式,增加了信息蒸馏块间信息的传递,使提取的特征信息包含更多细节.实验结果表明,本文算法重建图像相比其他对比算法更为清晰,峰值信噪比(PSNR)和结构相似度(SSIM)均有较大的提升. 相似文献
4.
提出了一种基于自商图像(Self Quotient Image-SQI)的超分辨率图像重建算法.该方法首先利用SQI提取光照不变量作为图像特征,并假设光反射分量具有分段平滑的特性,近似认为每一个小的图像块具有相同的增益系数;然后在流形学习的框架下,借助局部线性嵌套的思想构建高分辨率图像和低分辨率图像块间的关系,从而实现了超分辨率重建和图像增强.仿真结果表明,该算法有效地克服了传统方法受光照因素影响的缺点,在提高分辨率的同时克服了光照因素的影响,特别是对阴影效应的消除具有明显效果. 相似文献
5.
孔繁庭 《甘肃联合大学学报(自然科学版)》2015,29(2):66-68,92
图像超分辨率重建是指从一幅或多幅低分辨率、低质量图像中产生高分辨率、高质量图像的数字信号处理技术.本文分析了基于多幅的图像超分辨率重建方法,并讨论了目前基于多幅的图像超分辨率重建有待解决的问题. 相似文献
6.
根据图像的降质模型,基于凸集投影(POCS)原理,结合降质图像模型,提出一种使用中值滤波初值处理的高效POCS单帧图像的超分辨率重建方法.计算机仿真结果表明,和双线性内插、经典POCS方法比较,改进后的该方法重建图像信噪比平均提高2.1 dB和1.1 dB. 相似文献
7.
张月英 《山东师范大学学报(自然科学版)》2010,25(2):151-154
笔者提出了一种基于并行遗传算法的图像(序列)超分辨率重建的新框架方法.文中给出了算法原理及步骤,并对算法特点和性质进行了详细的分析,与直接使用迭代正则化相比,通过实验的方法选取正则化参数的方法,其最大优势是可通过实验来调整正则化参数,使算法更易搜索到最佳图像估计.最后给出了实验结果以及详细的实验分析,并将其与其它正则化图像插值技术进行了比较,证明是一种新颖实用的方法. 相似文献
8.
超分辨率重建是指由同一场景的低分辨率退化图像,运用相应的算法重建一幅清晰的高分辨率图像。然而,传统的基于插值、基于重建和基于学习的方法已很难获得进一步的突破。近年新兴的过完备稀疏表示是一种新的图像表示模型,它为解决超分辨率重建中的难点问题提供了新的思路。本文通过分析超分辨率技术的以往研究和最新进展,着重讨论了各算法在重构时的优缺点,并对未来超分辨率重建技术进行了展望。 相似文献
9.
针对无人机巡检图像模糊、分辨率低等问题,利用深度残差卷积神经网络(VDRCNN:Very Deep Residual Convolutional Neural Network)理论,提出了一种无人机巡检图像的超分辨率重构方法。该算法模型由超分辨率加深网络(VDSR:Very Deep Network for Super-Resolution)和残差结构组成,同时结合批量组归一化和Adam优化器以获得更好的重建效果。在此基础上,构建电力部件检测数据集,通过恰当设置网络参数,实现针对模糊电力部件图像的高分辨率重构。实验结果表明,基于VDRCNN的超分辨率方法重建出的图像纹理更丰富、视觉效果更逼真,在峰值信噪比和结构相似度上分别有2.95 dB和3.79%的提升,明显优于传统检测方法。所提出的基于VDRCNN的电力巡检图像超分辨率重构方法对解决电力巡检实际问题具有一定的应用价值。 相似文献
10.
视频图像超分辨率增强技术具有重要的研究价值。文章在研究和分析小波变换理论的基础上提出了一种基于小波变换的图像超分辨率增强算法,该算法充分利用小波多分辨率分解思想,体现图像分辨率降低的自然过程;通过估计高分辨率小波系数,经插值逆变换可得到重构的高分辨率图像。实验结果证明该算法克服了传统的插值方法致使图像高频部分损失、细节被模糊的缺点,是超分辨率图像处理的一种行之有效的途径,具有一定的实用价值。 相似文献
11.
12.
《云南民族大学学报(自然科学版)》2019,(6):597-605
图像超分辨率重建(super-resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在目标检测、医学成像和卫星遥感等领域都有着重要的应用价值.近年来,随着深度学习的迅速发展,基于深度学习的图像超分辨率重建方法取得了显著的进步.为了把握目前基于深度学习的图像超分辨率重建方法的发展情况和研究热点,对一些最新的基于深度学习的图像超分辨率重建方法进行了梳理,将它们分为两大类(有监督的和无监督的)分别进行阐述.然后,在公开的数据集上,将主流方法的性能进行了对比分析.最后,对基于深度学习的图像超分辨率重建方法进行了总结,并对其未来的研究趋势进行了展望. 相似文献
13.
为有效提升图像质量,提出一种基于图像退化模型和邻域嵌套的彩色图像超分辨率重建算法.通过退化模型在彩色空间上得出图像超分辨率重建训练集,并根据此训练集进行图像邻域分块.为了在训练过程中抑制噪声并锐化图像中的边缘信息,提取训练集亮度和梯度特征并进行特征融合.为了有效提升重建算法的自适应性,引入图像重建优化参数和边缘信息参数... 相似文献
14.
针对超分辨重建技术中传统POCS图像重建算法存在的Gibbs效应问题,提出一种采用投影修正机制抑制Gibbs效应的图像超分辨率重建算法.首先针对初始图像采用方向差分方法获得图像的边缘约束算子;随后在每一次的迭代重建过程中,结合前后重建结果的差值和边缘约束算子设计投影修正算子,并对残差阈值和点扩散函数分别进行修正,从而获得修正后的数据一致性投影过程;最后利用修正的投影过程获得最终重建图像.试验结果表明:改进算法具有较好的峰值信噪比,并且有效抑制了Gibbs效应,具有较好的应用前景. 相似文献
15.
超分辨率重建技术作为一种不需要硬件参与的提高图像空间分辨率的方法,已经发展成为图像处理领域的一个重要的研究方向。为提高现有DR(digital radiography)图像的分辨率,通过平板探测器(flat panel detector,FPD)获取低分辨率图像序列,在建立贝叶斯模型框架下,采用一种基于纵向和横向的图像像素一阶差分的L1范数重建高分辨率图像及其参数估计。研究结果表明,该方法能有效提高DR图像的分辨率,具有良好的应用价值。 相似文献
16.
超分辨率图像重构是利用多帧低分辨率图像重构出一幅具有更高分辨率图像.一般的凸集投影算法在放大倍数上升时存在两个问题: 一是计算复杂性急剧上升, 二是边缘振荡效应的加剧导致成像质量迅速恶化.本文针对凸集投影算法, 提出了一种基于约束边界模式的算法.实验结果表明, 新算法能够在有效抑制边缘振荡效应的同时, 较大地提高了重构速度. 相似文献
17.
《云南民族大学学报(自然科学版)》2019,(1)
稀疏表示模型是通过将字典中的原子进行组合得到期望的结果.为了解决传统字典学习中所有图像块重建均使用同一个字典,从而忽略了最佳稀疏域的问题,提出来一种基于多字典和稀疏噪声编码的图像超分辨率重建算法.在字典训练时,利用图像的特征将它们合理地划分成若干个簇,每个聚类训练生成子字典对,利用最佳字典对进行重建.在求解稀疏系数阶段,引入稀疏编码噪声去除噪声的影响,利用图像非局部自相似性来获得原始图像稀疏编码系数的良好估计,然后将观测图像的稀疏编码系数集中到这些估计当中.实验表明,与ASDS算法和SSIM算法相比较,该算法有更好的重建结果,获得了更丰富的图像细节和更清晰的边缘. 相似文献
18.
针对实际拍摄的亚像素信息较少的低分辨率运动图像,重构图像通常较为模糊,甚至不能分辨。为此,提出一种新的基于残差神经网络的高强度运动超分辨率图像重构方法。令沿运动方向的亮度保持恒定,通过光流场匹配实现高强度运动图像的运动估计;根据运动估计结果和超分辨率重构的基本思想,将BP神经网络看作残差神经网络的基础建立残差神经网络,对残差神经网络进行训练,参照训练样本将经插值法放大若干倍的待重构高强度运动图像作为输入,将高分辨率图像和输入图像间的残差作为输出,把输入和输出累加获取超分辨率图像,实现若干放大倍数高强度运动超分辨率图像的重构。实验结果表明,所提方法运动估计准确,重构图像清晰、质量佳。 相似文献
19.
SHI Wenzhong~ TIAN Yan~ LIU Jian~ . Department of Land Surveying Geo-Informatics The Hong Kong Polytechnic University Hong Kong China . Department of Electronic Information Engineering Huazhong University of Science Technology Wuhan Hubei China 《武汉大学学报:自然科学英文版》2006,11(2):399-404
0Introduction Aswellknown,super resolutiontechniqueisverysignifi cantnotonlyforboostingtheusabilityofanimage,butalsoforreducingthecostsofproducinghardware.Thisprob lemhasnowbecomeahottopicinthefieldofinternational restoration[13].Uptonow,numerousmethodshavebeenproposedforthisissue.InRef.[4],adifferentkindofconstraintsisusedtodesignasuper resolutionalgorithm.Thismethodattempts torecognizelocalfeaturesinthelow resolutionimagesandthenenhancestheirresolutioninanappropriatemanner.Byfusinginformat… 相似文献
20.
卷积神经网络由于其强大的非线性表达能力在自然图像的处理问题中已经获得了非常大的成功。传统的稀疏表示方法利用精确配准的高分辨率多光谱图像,从而限制了实际应用。针对传统方法的不足,本文提出了一种基于深度残差卷积神经网络的单高光谱图像超分辨率方法,无需对应的多光谱图像。我们构建深度残差卷积神经网络挖掘低分辨率遥感图像和高分辨率遥感图像之间的非线性关系。构建的深度学习网络串联多个残差块,并去除一些不必要的模块,如批标准化层,每个残差块只包含两个卷积层,这样在保证模型效果的同时又加快模型的效率。此外,因为遥感图像训练数据缺乏,我们充分挖掘自然图像和高光谱图像之间的相似性,利用自然图像样本训练卷积神经网络,进一步利用迁移学习将训练好的网络模型引入到高分辨率遥感图像超分辨问题上,解决了训练样本缺乏问题。最后,基于实际的遥感数据超分辨实验结果表明,本文所提出的方法具有良好的性能,能得到较好的超分辨效果。 相似文献