首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Essential role for Gab2 in the allergic response.   总被引:24,自引:0,他引:24  
H Gu  K Saito  L D Klaman  J Shen  T Fleming  Y Wang  J C Pratt  G Lin  B Lim  J P Kinet  B G Neel 《Nature》2001,412(6843):186-190
Dos/Gab family scaffolding adapters (Dos, Gab1, Gab2) bind several signal relay molecules, including the protein-tyrosine phosphatase Shp-2 and phosphatidylinositol-3-OH kinase (PI(3)K); they are also implicated in growth factor, cytokine and antigen receptor signal transduction. Mice lacking Gab1 die during embryogenesis and show defective responses to several stimuli. Here we report that Gab2-/- mice are viable and generally healthy; however, the response (for example, degranulation and cytokine gene expression) of Gab2-/- mast cells to stimulation of the high affinity immunoglobulin-epsilon (IgE) receptor Fc(epsilon)RI is defective. Accordingly, allergic reactions such as passive cutaneous and systemic anaphylaxis are markedly impaired in Gab2-/- mice. Biochemical analyses reveal that signalling pathways dependent on PI(3)K, a critical component of Fc(epsilon)RI signalling, are defective in Gab2-/- mast cells. Our data identify Gab2 as the principal activator of PI(3)K in response to Fc(epsilon)RI activation, thereby providing genetic evidence that Dos/Gab family scaffolds regulate the PI(3)K pathway in vivo. Gab2 and/or its associated signalling molecules may be new targets for developing drugs to treat allergy.  相似文献   

2.
新近发现的细胞因子信号转导抑制因子(SOCS)家族,因其能够通过Janus激酶-信号传导和转录激活子(JAK-STAT)信号传导通路来反馈调节生长因子的信号或者抑制细胞因子的信号转导而倍受研究人员重视。一些研究表明,SOCS-3在促进成肌细胞分化和抑制白介素6(IL-6)导致的细胞炎症过程中具有重要的作用。综合大量关于细胞因子信号转导抑制因子家族的文献报道,文章分析了近几年SOCS-2和SOCS-3与IGF-1和GH信号转导关系的研究,特别是关于SOCS-3在成肌细胞分化过程中的研究,认为可以将SOCS-2和SOCS-3作为细胞内生长信号调节和促进动物肌肉发育的潜在因子进行研究。  相似文献   

3.
Signal transduction through Toll-like receptors (TLRs) originates from their intracellular Toll/interleukin-1 receptor (TIR) domain, which binds to MyD88, a common adaptor protein containing a TIR domain. Although cytokine production is completely abolished in MyD88-deficient mice, some responses to lipopolysaccharide (LPS), including the induction of interferon-inducible genes and the maturation of dendritic cells, are still observed. Another adaptor, TIRAP (also known as Mal), has been cloned as a molecule that specifically associates with TLR4 and thus may be responsible for the MyD88-independent response. Here we report that LPS-induced splenocyte proliferation and cytokine production are abolished in mice lacking TIRAP. As in MyD88-deficient mice, LPS activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases is induced with delayed kinetics in TIRAP-deficient mice. Expression of interferon-inducible genes and the maturation of dendritic cells is observed in these mice; they also show defective response to TLR2 ligands, but not to stimuli that activate TLR3, TLR7 or TLR9. In contrast to previous suggestions, our results show that TIRAP is not specific to TLR4 signalling and does not participate in the MyD88-independent pathway. Instead, TIRAP has a crucial role in the MyD88-dependent signalling pathway shared by TLR2 and TLR4.  相似文献   

4.
Horng T  Barton GM  Flavell RA  Medzhitov R 《Nature》2002,420(6913):329-333
Mammalian Toll-like receptors (TLRs) function as sensors of infection and induce the activation of innate and adaptive immune responses. Upon recognizing conserved pathogen-associated molecular products, TLRs activate host defence responses through their intracellular signalling domain, the Toll/interleukin-1 receptor (TIR) domain, and the downstream adaptor protein MyD88 (refs 1-3). Although members of the TLR and the interleukin-1 (IL-1) receptor families all signal through MyD88, the signalling pathways induced by individual receptors differ. TIRAP, an adaptor protein in the TLR signalling pathway, has been identified and shown to function downstream of TLR4 (refs 4, 5). Here we report the generation of mice deficient in the Tirap gene. TIRAP-deficient mice respond normally to the TLR5, TLR7 and TLR9 ligands, as well as to IL-1 and IL-18, but have defects in cytokine production and in activation of the nuclear factor NF-kappaB and mitogen-activated protein kinases in response to lipopolysaccharide, a ligand for TLR4. In addition, TIRAP-deficient mice are also impaired in their responses to ligands for TLR2, TLR1 and TLR6. Thus, TIRAP is differentially involved in signalling by members of the TLR family and may account for specificity in the downstream signalling of individual TLRs.  相似文献   

5.
While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-alpha-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-alpha, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA-TGR5-cAMP-D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.  相似文献   

6.
The lipid phosphatase SHIP2 controls insulin sensitivity   总被引:17,自引:0,他引:17  
Insulin is the primary hormone involved in glucose homeostasis, and impairment of insulin action and/or secretion has a critical role in the pathogenesis of diabetes mellitus. Type-II SH2-domain-containing inositol 5-phosphatase, or 'SHIP2', is a member of the inositol polyphosphate 5-phosphatase family. In vitro studies have shown that SHIP2, in response to stimulation by numerous growth factors and insulin, is closely linked to signalling events mediated by both phosphoinositide-3-OH kinase and Ras/mitogen-activated protein kinase. Here we report the generation of mice lacking the SHIP2 gene. Loss of SHIP2 leads to increased sensitivity to insulin, which is characterized by severe neonatal hypoglycaemia, deregulated expression of the genes involved in gluconeogenesis, and perinatal death. Adult mice that are heterozygous for the SHIP2 mutation have increased glucose tolerance and insulin sensitivity associated with an increased recruitment of the GLUT4 glucose transporter and increased glycogen synthesis in skeletal muscles. Our results show that SHIP2 is a potent negative regulator of insulin signalling and insulin sensitivity in vivo.  相似文献   

7.
8.
9.
Productive interaction of a T lymphocyte with an antigen-presenting cell results in the clustering of the T-cell antigen receptor (TCR) and the recruitment of a large signalling complex to the site of cell-cell contact. Subsequent signal transduction resulting in cytokine gene expression requires the activation of one or more of the multiple isoenzymes of serine/threonine-specific protein kinase C (PKC). Among the several PKC isoenzymes expressed in T cells, PKC-theta is unique in being rapidly recruited to the site of TCR clustering. Here we show that PKC-theta is essential for TCR-mediated T-cell activation, but is dispensable during TCR-dependent thymocyte development. TCR-initiated NF-kappaB activation was absent from PKC-theta(-/-) mature T lymphocytes, but was intact in thymocytes. Activation of NF-kappaB by tumour-necrosis factor alpha and interleukin-1 was unaffected in the mutant mice. Although studies in T-cell lines had suggested that PKC-theta regulates activation of the JNK signalling pathway, induction of JNK was normal in T cells from mutant mice. These results indicate that PKC-theta functions in a unique pathway that links the TCR signalling complex to the activation of NF-kappaB in mature T lymphocytes.  相似文献   

10.
Lindsay ME  Dietz HC 《Nature》2011,473(7347):308-316
Aortic aneurysm is common, accounting for 1-2% of all deaths in industrialized countries. Early theories of the causes of human aneurysm mostly focused on inherited or acquired defects in components of the extracellular matrix in the aorta. Although several mutations in the genes encoding extracellular matrix proteins have been recognized, more recent discoveries have shown important perturbations in cytokine signalling cascades and intracellular components of the smooth muscle contractile apparatus. The modelling of single-gene heritable aneurysm disorders in mice has shown unexpected involvement of the transforming growth factor-β cytokine pathway in aortic aneurysm, highlighting the potential for new therapeutic strategies.  相似文献   

11.
Choi MH  Lee IK  Kim GW  Kim BU  Han YH  Yu DY  Park HS  Kim KY  Lee JS  Choi C  Bae YS  Lee BI  Rhee SG  Kang SW 《Nature》2005,435(7040):347-353
Platelet-derived growth factor (PDGF) is a potent mitogenic and migratory factor that regulates the tyrosine phosphorylation of a variety of signalling proteins via intracellular production of H2O2 (refs 1, 2-3). Mammalian 2-Cys peroxiredoxin type II (Prx II; gene symbol Prdx2) is a cellular peroxidase that eliminates endogenous H2O2 produced in response to growth factors such as PDGF and epidermal growth factor; however, its involvement in growth factor signalling is largely unknown. Here we show that Prx II is a negative regulator of PDGF signalling. Prx II deficiency results in increased production of H2O2, enhanced activation of PDGF receptor (PDGFR) and phospholipase Cgamma1, and subsequently increased cell proliferation and migration in response to PDGF. These responses are suppressed by expression of wild-type Prx II, but not an inactive mutant. Notably, Prx II is recruited to PDGFR upon PDGF stimulation, and suppresses protein tyrosine phosphatase inactivation. Prx II also leads to the suppression of PDGFR activation in primary culture and a murine restenosis model, including PDGF-dependent neointimal thickening of vascular smooth muscle cells. These results demonstrate a localized role for endogenous H2O2 in PDGF signalling, and indicate a biological function of Prx II in cardiovascular disease.  相似文献   

12.
The gut microbiota is a complex ecosystem that has coevolved with host physiology. Colonization of germ-free (GF) mice with a microbiota promotes increased vessel density in the small intestine, but little is known about the mechanisms involved. Tissue factor (TF) is the membrane receptor that initiates the extrinsic coagulation pathway, and it promotes developmental and tumour angiogenesis. Here we show that the gut microbiota promotes TF glycosylation associated with localization of TF on the cell surface, the activation of coagulation proteases, and phosphorylation of the TF cytoplasmic domain in the small intestine. Anti-TF treatment of colonized GF mice decreased microbiota-induced vascular remodelling and expression of the proangiogenic factor angiopoietin-1 (Ang-1) in the small intestine. Mice with a genetic deletion of the TF cytoplasmic domain or with hypomorphic TF (F3) alleles had a decreased intestinal vessel density. Coagulation proteases downstream of TF activate protease-activated receptor (PAR) signalling implicated in angiogenesis. Vessel density and phosphorylation of the cytoplasmic domain of TF were decreased in small intestine from PAR1-deficient (F2r(-/-)) but not PAR2-deficient (F2rl1(-/-)) mice, and inhibition of thrombin showed that thrombin-PAR1 signalling was upstream of TF phosphorylation. Thus, the microbiota-induced extravascular TF-PAR1 signalling loop is a novel pathway that may be modulated to influence vascular remodelling in the small intestine.  相似文献   

13.
Members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family contribute to immune responses through activation of nuclear factor-κB (NF-κB), type I interferon and inflammasome signalling. Mice lacking the NLR family member NLRP6 were recently shown to be susceptible to colitis and colorectal tumorigenesis, but the role of NLRP6 in microbial infections and the nature of the inflammatory signalling pathways regulated by NLRP6 remain unclear. Here we show that Nlrp6-deficient mice are highly resistant to infection with the bacterial pathogens Listeria monocytogenes, Salmonella typhimurium and Escherichia coli. Infected Nlrp6-deficient mice had increased numbers of monocytes and neutrophils in circulation, and NLRP6 signalling in both haematopoietic and radioresistant cells contributed to increased susceptibility. Nlrp6 deficiency enhanced activation of mitogen-activated protein kinase (MAPK) and the canonical NF-κB pathway after Toll-like receptor ligation, but not cytosolic NOD1/2 ligation, in vitro. Consequently, infected Nlrp6-deficient cells produced increased levels of NF-κB- and MAPK-dependent cytokines and chemokines. Thus, our results reveal NLRP6 as a negative regulator of inflammatory signalling, and demonstrate a role for this NLR in impeding clearance of both Gram-positive and -negative bacterial pathogens.  相似文献   

14.
The primary role of cytokines in haemato-lymphopoiesis is thought to be the regulation of cell growth and survival. But the instructive action of cytokines in haematopoiesis has not been well addressed. Here we show that a clonogenic common lymphoid progenitor, a bone marrow-resident cell that gives rise exclusively to lymphocytes (T, B and natural killer cells), can be redirected to the myeloid lineage by stimulation through exogenously expressed interleukin (IL)-2 and GM-CSF (granulocyte/macrophage colony-stimulating factor) receptors. Analysis of mutants of the beta-chain of the IL-2 receptor revealed that the granulocyte- and monocyte-differentiation signals are triggered by different cytoplasmic domains, showing that the signalling pathway(s) responsible for these unique developmental outcomes are separable. Finally, we show that the endogenous myelomonocytic cytokine receptors for GM-CSF and macrophage colony-stimulating factor (M-CSF) are expressed at low to moderate levels on the more primitive haematopoietic stem cells, are absent on common lymphoid progenitors, and are upregulated after myeloid lineage induction by IL-2. We conclude that cytokine signalling can regulate cell-fate decisions and propose that a critical step in lymphoid commitment is downregulation of cytokine receptors that drive myeloid cell development.  相似文献   

15.
Innate immunity is a fundamental defence response that depends on evolutionarily conserved pattern recognition receptors for sensing infections or danger signals. Nucleotide-binding and oligomerization domain (NOD) proteins are cytosolic pattern-recognition receptors of paramount importance in the intestine, and their dysregulation is associated with inflammatory bowel disease. They sense peptidoglycans from commensal microorganisms and pathogens and coordinate signalling events that culminate in the induction of inflammation and anti-microbial responses. However, the signalling mechanisms involved in this process are not fully understood. Here, using genome-wide RNA interference, we identify candidate genes that modulate the NOD1 inflammatory response in intestinal epithelial cells. Our results reveal a significant crosstalk between innate immunity and apoptosis and identify BID, a BCL2 family protein, as a critical component of the inflammatory response. Colonocytes depleted of BID or macrophages from Bid(-/-) mice are markedly defective in cytokine production in response to NOD activation. Furthermore, Bid(-/-) mice are unresponsive to local or systemic exposure to NOD agonists or their protective effect in experimental colitis. Mechanistically, BID interacts with NOD1, NOD2 and the IκB kinase (IKK) complex, impacting NF-κB and extracellular signal-regulated kinase (ERK) signalling. Our results define a novel role of BID in inflammation and immunity independent of its apoptotic function, furthering the mounting evidence of evolutionary conservation between the mechanisms of apoptosis and immunity.  相似文献   

16.
Alexopoulou L  Holt AC  Medzhitov R  Flavell RA 《Nature》2001,413(6857):732-738
Toll-like receptors (TLRs) are a family of innate immune-recognition receptors that recognize molecular patterns associated with microbial pathogens, and induce antimicrobial immune responses. Double-stranded RNA (dsRNA) is a molecular pattern associated with viral infection, because it is produced by most viruses at some point during their replication. Here we show that mammalian TLR3 recognizes dsRNA, and that activation of the receptor induces the activation of NF-kappaB and the production of type I interferons (IFNs). TLR3-deficient (TLR3-/-) mice showed reduced responses to polyinosine-polycytidylic acid (poly(I:C)), resistance to the lethal effect of poly(I:C) when sensitized with d-galactosamine (d-GalN), and reduced production of inflammatory cytokines. MyD88 is an adaptor protein that is shared by all the known TLRs. When activated by poly(I:C), TLR3 induces cytokine production through a signalling pathway dependent on MyD88. Moreover, poly(I:C) can induce activation of NF-kappaB and mitogen-activated protein (MAP) kinases independently of MyD88, and cause dendritic cells to mature.  相似文献   

17.
Korn T  Bettelli E  Gao W  Awasthi A  Jäger A  Strom TB  Oukka M  Kuchroo VK 《Nature》2007,448(7152):484-487
On activation, naive T cells differentiate into effector T-cell subsets with specific cytokine phenotypes and specialized effector functions. Recently a subset of T cells, distinct from T helper (T(H))1 and T(H)2 cells, producing interleukin (IL)-17 (T(H)17) was defined and seems to have a crucial role in mediating autoimmunity and inducing tissue inflammation. We and others have shown that transforming growth factor (TGF)-beta and IL-6 together induce the differentiation of T(H)17 cells, in which IL-6 has a pivotal function in dictating whether T cells differentiate into Foxp3+ regulatory T cells (T(reg) cells) or T(H)17 cells. Whereas TGF-beta induces Foxp3 and generates T(reg) cells, IL-6 inhibits the generation of T(reg) cells and induces the production of IL-17, suggesting a reciprocal developmental pathway for T(H)17 and T(reg) cells. Here we show that IL-6-deficient (Il6-/-) mice do not develop a T(H)17 response and their peripheral repertoire is dominated by Foxp3+ T(reg) cells. However, deletion of T(reg) cells leads to the reappearance of T(H)17 cells in Il6-/- mice, suggesting an additional pathway by which T(H)17 cells might be generated in vivo. We show that an IL-2 cytokine family member, IL-21, cooperates with TGF-beta to induce T(H)17 cells in naive Il6-/- T cells and that IL-21-receptor-deficient T cells are defective in generating a T(H)17 response.  相似文献   

18.
19.
 为了准确分析尼罗罗非鱼生长激素(growth hormone , GH)、生长激素受体(growth hormone receptors, GHRs)和胰岛素样生长因子I (Insulin like growth factor-I,IGF I)在早期发育阶段的作用,实验设计了尼罗罗非鱼GH、GHR、IGF I基因的特异性引物,提 取垂体或肝脏总RNA并扩增出目的片段,将PCR产物克隆到pGEM-T Easy载体,经质粒PCR扩增、酶切和测序鉴定重组质粒,构建 标准曲线等,成功建立了GH、GHR、IGF-I基因荧光实时定量PCR检测方法。运用建立的荧光实时定量 PCR检测了尼罗罗非鱼GH 、GHR和IGF I基因表达的发育性变化。结果表明在早期发育阶段,尼罗罗非鱼GH 与 IGF-I,GHR1与 GHR2的mRNA表达存在一 定的互补关系;GH的表达与GHR1的表达呈显著正相关,提示GH与IGF-I,GHR1与GHR2在尼罗罗非鱼早期发育的不同阶段起主导 作用,且GH可能主要通过与GHR1的结合起作用。  相似文献   

20.
Pan F  Sun L  Kardian DB  Whartenby KA  Pardoll DM  Liu JO 《Nature》2007,445(7126):433-436
Feedback regulation of adaptive immunity is a fundamental mechanism for controlling the overall output of different signal transduction pathways, including that mediated by the T-cell antigen receptor (TCR). Calcineurin and Ras are known to have essential functions during T-cell activation. However, how the calcineurin signalling pathway is terminated in the process is still largely unknown. Although several endogenous inhibitors of calcineurin have been reported, none fulfils the criteria of a feedback inhibitor, as their expression is not responsive to TCR signalling. Here we identify an endogenous inhibitor of calcineurin, named Carabin, which also inhibits the Ras signalling pathway through its intrinsic Ras GTPase-activating protein (GAP) activity. Expression of Carabin is upregulated on TCR signalling in a manner that is sensitive to inhibitors of calcineurin, indicating that Carabin constitutes part of a negative regulatory loop for the intracellular TCR signalling pathway. Knockdown of Carabin by short interfering RNA led to a significant enhancement of interleukin-2 production by antigen-specific T cells in vitro and in vivo. Thus, Carabin is a negative feedback inhibitor of the calcineurin signalling pathway that also mediates crosstalk between calcineurin and Ras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号