首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Li  J D McCann  C M Liedtke  A C Nairn  P Greengard  M J Welsh 《Nature》1988,331(6154):358-360
Chloride (Cl-) secretion by the airway epithelium regulates, in part, the quantity and composition of the respiratory tract fluid, thereby facilitating mucociliary clearance. The rate of Cl- secretion is controlled by apical membrane Cl- channels. Apical Cl- channels are opened and Cl- secretion is stimulated by a variety of hormones and neurotransmitters that increase intracellular levels of cyclic AMP (cAMP). In cystic fibrosis (CF), a common lethal genetic disease of Caucasians, airway, sweat-gland duct, secretory-coil and possibly other epithelia are anion impermeable. This abnormality may explain several of the clinical manifestations of the disease. The Cl- impermeability in CF-airway epithelia has been localized to the apical cell membrane, where regulation of Cl- channels is abnormal: hormonal secretagogues stimulate cAMP accumulation appropriately but Cl- channels fail to open. Here we report that the purified catalytic subunit of cAMP-dependent protein kinase plus ATP opens Cl- channels in excised, cell-free patches of membrane from normal cells, but fails to open Cl- channels in CF cells. These results indicate that in normal cells, the cAMP-dependent protein kinase phosphorylates the Cl- channel or an associated regulatory protein, causing the channel to open. The failure of CF Cl- channels to open suggests a defect either in the channel or in such an associated regulatory protein.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (delta F508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.  相似文献   

3.
Chloride and potassium channels in cystic fibrosis airway epithelia   总被引:5,自引:0,他引:5  
M J Welsh  C M Liedtke 《Nature》1986,322(6078):467-470
Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.  相似文献   

4.
Cystic fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase and protein kinase C. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2(+)-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2(+)-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.  相似文献   

5.
Gadsby DC  Vergani P  Csanády L 《Nature》2006,440(7083):477-483
CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.  相似文献   

6.
Cystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how the loss of CFTR function first disrupts airway host defence has remained uncertain. To investigate the abnormalities that impair elimination when a bacterium lands on the pristine surface of a newborn CF airway, we interrogated the viability of individual bacteria immobilized on solid grids and placed onto the airway surface. As a model, we studied CF pigs, which spontaneously develop hallmark features of CF lung disease. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly kills bacteria in vivo, when removed from the lung and in primary epithelial cultures. Lack of CFTR reduces bacterial killing. We found that the ASL pH was more acidic in CF pigs, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and, conversely, increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defence defect to the loss of CFTR, an anion channel that facilitates HCO(3)(-) transport. Without CFTR, airway epithelial HCO(3)(-) secretion is defective, the ASL pH falls and inhibits antimicrobial function, and thereby impairs the killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF, and that assaying bacterial killing could report on the benefit of therapeutic interventions.  相似文献   

7.
Cystic fibrosis is associated with a defect in epithelial chloride ion transport which is caused by mutations in a membrane protein called CFTR (cystic fibrosis transmembrane conductance regulator). Heterologous expression of CFTR produces cyclicAMP-sensitive Cl(-)-channel activity. Deletion of phenylalanine at amino-acid position 508 in CFTR (delta F508 CFTR) is the most common mutation in cystic fibrosis. It has been proposed that this mutation prevents glycoprotein maturation and its transport to its normal cellular location. We have expressed both CFTR and delta F508 CFTR in Vero cells using recombinant vaccinia virus. Although far less delta F508 CFTR reached the plasma membrane than normal CFTR, sufficient delta F508 CFTR was expressed at the plasma membrane to permit functional analysis. delta F508 CFTR expression induced a reduced activity of the cAMP-activated Cl- channel, with conductance, anion selectivity and open-time kinetics similar to those of CFTR, but with much greater closed times, resulting in a large decrease of open probability. The delta F508 mutation thus seems to have two major consequences, an abnormal translocation of the CFTR protein which limits membrane insertion, and an abnormal function in mediating Cl- transport.  相似文献   

8.
Watanabe H  Vriens J  Prenen J  Droogmans G  Voets T  Nilius B 《Nature》2003,424(6947):434-438
TRPV4 is a widely expressed cation channel of the 'transient receptor potential' (TRP) family that is related to the vanilloid receptor VR1 (TRPV1). It functions as a Ca2+ entry channel and displays remarkable gating promiscuity by responding to both physical stimuli (cell swelling, innoxious heat) and the synthetic ligand 4alphaPDD. An endogenous ligand for this channel has not yet been identified. Here we show that the endocannabinoid anandamide and its metabolite arachidonic acid activate TRPV4 in an indirect way involving the cytochrome P450 epoxygenase-dependent formation of epoxyeicosatrienoic acids. Application of 5',6'-epoxyeicosatrienoic acid at submicromolar concentrations activates TRPV4 in a membrane-delimited manner and causes Ca2+ influx through TRPV4-like channels in vascular endothelial cells. Activation of TRPV4 in vascular endothelial cells might therefore contribute to the relaxant effects of endocannabinoids and their P450 epoxygenase-dependent metabolites on vascular tone.  相似文献   

9.
10.
A cyclic AMP-stimulated chloride conductance appears when the cystic fibrosis gene is expressed in non-epithelial cells by infection with recombinant viruses. Cyclic AMP-stimulated conductance in this system is mediated by the same ohmic, low-conductance Cl- channel as in human secretory epithelia, but control of this channel by phosphorylation has not been directly demonstrated. Here we report the appearance of the low-conductance Cl- channel in Chinese hamster ovary cells after stable transfection with the cystic fibrosis gene. The channel is regulated on-cell by membrane-permeant analogues of cAMP and off-cell by protein kinases A and C and by alkaline phosphatase. These results are further evidence that the cystic fibrosis transmembrane regulator is a Cl- channel which can be activated by specific phosphorylation events and inactivated by dephosphorylation; they reveal an unsuspected synergism between converging kinase regulatory pathways.  相似文献   

11.
Localization of cystic fibrosis locus to human chromosome 7cen-q22   总被引:5,自引:0,他引:5  
Cystic fibrosis (CF) is the most common genetic disease in Caucasian populations, with an incidence of 1 in 2,000 live births in the United Kingdom, and a carrier frequency of approximately 1 in 20. The biochemical basis of the disease is not known, although membrane transport phenomena associated with CF have been described recently. Consanguinity studies have shown that the inheritance of CF is consistent with it being a recessive defect caused by a mutation at a single autosomal locus. Eiberg et al. have reported a genetic linkage between the CF locus and a polymorphic locus controlling activity of the serum aryl esterase paraoxonase (PON). The chromosomal location of PON, however, is not known. Linkage to a DNA probe, DOCR1-917, was also recently found at a genetic distance of approximately 15 centimorgans (L.-C. Tsui and H. Donnis-Keller, personal communication), but no chromosomal localization was given. Here we report tight linkage between the CF locus and an anonymous DNA probe, pJ3.11, which has been assigned to chromosome 7cen-q22.  相似文献   

12.
A Linker  L R Evans 《Nature》1968,218(5143):774-775
  相似文献   

13.
Although cystic fibrosis (CF) is among the most common inherited diseases in Caucasian populations, the basic biochemical defect is not yet known. CF is inherited as an autosomal recessive trait apparently due to mutations in a single gene, whence the efforts made to identify the genetic locus responsible by linkage studies. Two markers have recently been identified that are genetically linked to CF: one is a genetic variation in serum level of activity of the enzyme paraoxonase, and the other is a restriction fragment length polymorphism (RFLP) identified with a randomly isolated DNA probe. We report here that the genetic locus DOCRI-917 defined by the cloned DNA probe is located on chromosome 7.  相似文献   

14.
15.
16.
Biomimetics,a term defined by Schmitt in 1960s,has been accompanying the development of humanity in learning from nat-ure to solve problems over billions of yea...  相似文献   

17.
通过实例论述了从1kw双通道四频道改成单通道二频道发射机的方案、改机调试及试机的整个过程,其测试结果达到了预期效果,满足现有工作的需要.为开源节流、废物利用提供了一个很好的例证,为今后的技术改革实践积累了相关的经验.  相似文献   

18.
Methyl chloride (CH3Cl), the most abundant halocarbon in the atmosphere, has received much attention as a natural source of chlorine atoms in the stratosphere. The annual global flux of CH3Cl has been estimated to be around 3.5 Tg on the grounds that this must balance the loss through reaction with OH radicals (which gives a lifetime for atmospheric CH3Cl of 1.5 yr). The most likely main source of methyl chloride has been thought to be oceanic emission, with biomass burning the second largest source. But recent seawater measurements indicate that oceanic fluxes cannot account for more than 12% of the estimated global flux of CH3Cl, raising the question of where the remainder comes from. Here we report evidence of significant CH3Cl emission from warm coastal land, particularly from tropical islands. This conclusion is based on a global monitoring study and spot measurements, which show enhancement of atmospheric CH3Cl in the tropics, a close correlation between CH3Cl concentrations and those of biogenic compounds emitted by terrestrial plants, and OH-linked seasonality of CH3Cl concentrations in middle and high latitudes. A strong, equatorially located source of this nature would explain why the distribution of CH3Cl is uniform between the Northern and Southern hemispheres, despite their differences in ocean and land area.  相似文献   

19.
20.
E Gross  D Goldberg  A Levitzki 《Nature》1992,360(6406):762-765
In the yeast Sacchromyces cerevisiae, addition of glucose to starved cells triggers a transient rise in the intracellular level of cyclic AMP that induces a protein phosphorylation cascade. The glucose signal is processed by the Cdc25/Ras/adenylyl cyclase pathway, where the role of Cdc25 is to catalyse the GDP-GTP exchange on Ras. The molecular mechanisms involved in the regulation of the activity of Cdc25 are unknown. We report here the use of highly selective anti-Cdc25 antibodies to demonstrate that Cdc25 is a phospho protein and that in response to glucose it is hyperphosphorylated, within seconds, by the cyclic AMP-dependent protein kinase. It is also demonstrated that, concomitantly with hyperphosphorylation, Cdc25 partially relocalizes to the cytoplasm, reducing its accessibility to membrane-bound Ras. These results are of general significance because of the highly conserved sequence of Ras-guanyl nucleotide exchange factors from yeasts to mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号