共查询到18条相似文献,搜索用时 62 毫秒
1.
针对小波分析在故障诊断时的局限性,将小波分析和支持向量机算法相结合,提出基于小波包能量谱及支持向量机算法(SVM)的故障检测方法.该方法以振动信号小波包分解后各子频带的能量作为故障检测特征,利用SVM算法对轴承故障进行检测实验.结果表明:小波包能量谱能有效地反映轴承信号特征,并对故障进行检测.该方法同基于Lipschitz指数熵、单奇异点检测,以及小波包能量谱与神经网络相结合的故障检测方法进行比较,检测率均优于其他三种常用方法. 相似文献
2.
为提高脑电信号分类准确率,提出基于小波包分解和近似熵相结合的特征提取方法。该方法利用小波包对信号的低频和高频进行分解,用近似熵对得到的叶子结点进行计算得到特征值,然后将其输入支持向量机进行分类。实验结果表明,该方法在两种思维结合识别中正确率最高达到了97.37%,取得了较好的分类效果。 相似文献
3.
针对逆变器功率元件经常出现的开路故障,提出一种基于小波包分解和支持向量机的故障诊断方法。利用小波包对逆变器输入电流进行分解,获得电流信号的各层细节系数、能量以及偏移量。对分解得来的参数进行相应的归一化处理,得到逆变器功率开关元件不同故障状态下的故障特征。将其各自作为多分类支持向量机的输入量来训练多分类支持向量机。通过模拟实验证明,该方法在诊断和定位故障上具有较高精度和效率。 相似文献
4.
5.
为了提高滚动轴承震动信号故障诊断的准确性,该文提出了一种基于小波包熵和聚类分析的集合型故障诊断方法。用小波包对滚动轴承振动信号进行三层分解,并提取其能量特征。以振动信号的能量分布作为概率分布进行信息熵运算,提取振动信号特征。为了检测是否有故障发生,结合减法聚类的思想,提出采用密度指标最高原则优化初始聚类中心的K均值聚类算法进行聚类。为了检验所提方法的有效性,采用不同故障直径的滚动轴承数据进行实验。实验结果表明,新的聚类方法克服了传统K均值聚类对初始聚类中心敏感的缺陷,其结果可以作为滚动轴承早期故障诊断的依据。 相似文献
6.
《河南科技大学学报(自然科学版)》2014,(5)
小波包分解可以提高信号频率分辨率,但子带信号会出现虚假频率成分,造成严重的频率混叠现象。运用小波包的改进算法和经验模态分解相结合,来检测诊断滚动轴承故障的特征。首先,应用快速傅里叶变换和快速傅里叶逆变换对小波包各子带信号进行处理,并调整滤波器组使子带频带顺序排列。提取含故障频率的子带信号对其进行经验模态分解,以互相关、峭度准则提取故障本征模函数分量,可以避免本征模函数分量选择的盲目性。对仿真信号分析和实例分析的结果表明:该方法能够准确地检测出轴承故障,从而突出该方法的有效性。 相似文献
7.
滚动轴承在使用过程中会经历不同的性能退化状态。提出小波包相关频带谱能量熵以评估滚动轴承初始性能退化程度。以滚动轴承全寿命周期数据为支撑,对数据进行小波包分解,并利用相关系数法提取包含主要故障信息的时频分量,然后沿时间轴计算各频带幅值谱,再计算谱能量熵。通过实验与时域典型指标均方根值(RMS),以及小波包频带幅值谱熵和小波包频带谱能量熵评估指标进行对比,验证了所提方法在滚动轴承性能退化评估中,对初始故障的评估具有一定的优越性。 相似文献
8.
针对Kmeans算法在滚轴故障检测中k值需要人工设定以及初始聚类中心的随机选取问题,提出I-Canopy-Kmeans算法的故障检测方法对其进行优化。该算法在初始聚类中心的随机选取方面,使用“最远最近”的原则,即在获取n个Canopy时,任意两个Canopy中心点之间的距离应该尽可能远,且第n个Canopy中心点应该是其他数据点与前面n-1个中心点最远距离中最小的一个;在阈值选取方面,使用欧氏距离求出所有数据点的均值点,再计算均值点到所有数据点的距离,并用L1和L2分别表示最远距离和最近距离,然后将(L1+L2)/2赋值给阈值T1、(L1+L2)/3赋值给阈值T2。实验结果表明,与传统Kmeans算法相比,I-Canopy-Kmeans算法的各项评价指标均有提高,其中IAR提高最多,达到了40.01%。 相似文献
9.
基于小波包和支持向量机的传感器故障诊断方法 总被引:2,自引:0,他引:2
针对自确认压力传感器的故障诊断问题,提出了一种基于小波包变换和支持向量机的传感器故障诊断方法。该方法对传感器输出信号进行三层小波包分解,提取各个节点的小波包系数,对每个节点的小波包系数通过一定的削减算法增强故障特征,然后利用重构的时域信号计算各个节点的能量以及整个信号的削减比作为特征向量,以此作为输入来建立支持向量多分类机,判断传感器的故障类型。对自确认压力传感器、温度和流量传感器的故障诊断结果表明,该方法能有效地应用于传感器的故障诊断中。 相似文献
10.
为了实现对故障轴承的特征提取和对故障特征的准确分类,该文提出了应用小波包变换与改进的多元最小二乘支持向量机(LS-SVM)相结合进行滚动轴承故障模式识别的方法.首先,利用小波包对滚动轴承振动信号进行分解和重构,并构造特征向量;然后,针对传统的单个核函数不能兼顾学习能力和泛化能力的缺点,提出了应用混合核函数对多元LS-SVM进行改进的算法;最后,将特征向量作为输入,分别应用于常用核函数和基于混合核函数的多元LS-SVM对滚动轴承故障类型进行仿真判别对比实验.结果证明了所设计方法的有效性. 相似文献
11.
内圈点蚀、外圈压痕是变速箱滚动轴承常见典型故障,为实现其快速、准确诊断,提出基于局部均值分解(Local mean decomposition,简称LMD)的PF(Product Function)分量能量特征和支持向量机(Support Vector Machine,简称SVM)相结合的变速箱滚动轴承诊断方法.将采集的振动信号进行LMD局部均值分解,获得若干个PF分量,并以计算的PF分量的能量熵作为特征量输入支持向量机,进行滚动轴承的故障类型的识别.通过对滚动轴承正常状态、内圈点蚀故障和外圈压痕故障的诊断效果对比分析表明,相对于基于神经网络的轴承故障诊断方法,基于PF分量能量特征和支持向量机的诊断方法有着更高的故障识别率. 相似文献
12.
提出了小波包联合自回归功率谱理论的故障诊断方法.对采集的轴承振动信号采用高、低正交共轭镜面滤波器组,将信号划分到不同频道上.滤波器每作用一次,数据点减半,采样的时间增至两倍.选取轴承缺陷所在频段的数据插零,将其他频带补零重构提高缺陷信号的时频分辨率;然后通过AR功率谱分析轴承运行状态,诊断出轴承对应的故障.对207滚动轴承的早期缺陷作了实际诊断,诊断结果与实际较为符合.证明该方法是一种有效的弱信号缺陷提取与诊断方法. 相似文献
13.
回转支承机械结构和工作条件特殊,导致其故障机制复杂,传统的信号分析方法难以对其进行有效的故障诊断.提出了一种基于小波分解与能量谱相结合的回转支承故障诊断方法.利用小波多尺度、多分辨率的特性,对回转支承振动信号进行多尺度分解;根据回转支承低频故障特性,对小波分解后的低频区进行频谱分析,再结合各尺度频带能量谱进行回转支承故障诊断.通过对回转支承加速寿命试验中各阶段数据分析表明,该方法能够有效、准确地诊断出回转支承故障模式,相比单一的小波频谱分析诊断精度更高、可靠性更好,具有一定的工程实用价值. 相似文献
14.
小波包能谱熵与神经网络在断路器故障诊断中的应用 总被引:7,自引:1,他引:7
提出了一种以振动信号小波包能谱熵为特征量的断路器故障神经网络诊断方法。利用小波包分解原理将高压断路器振动信号分解到不同频段中,计算各频段的能谱熵值,以此构造小波包能谱熵向量作为神经网络的输入向量,并利用遗传算法对网络的连接权值进行了优化。引入置信度的概念,对改进神经网络输出的故障模式识别结果进行评价。通过试验分析结果表明了该方法的有效性,改进后的神经网络具有新故障模式的识别功能。 相似文献
15.
针对强背景噪声下非高斯脉冲噪声和高斯噪声对滚动轴承故障诊断产生严重干扰的问题,提出了一种基于改进变分模态分解(variational mode decomposition, VMD)并与循环相关熵谱(cyclic correntropy spectrum, CCES)相结合的故障诊断方法。首先,针对VMD传统重构指标易受噪声影响的问题,引入相关熵峭度(correlation entropy kurtosis index, CEK)指标对VMD分解后的模态分量进行选择与重构,去除高斯噪声;然后针对重构后信号仍存在的脉冲噪声影响问题,对重构信号进行CCES投影融合去除非高斯脉冲噪声干扰并增强特征;最后对融合结果进行分析与故障诊断。经仿真测试与实验表明,所提出的方法可以在高斯噪声和非高斯脉冲噪声背景下有效提取滚动轴承故障特征频率并实现故障诊断。 相似文献
16.
基于小波包变换的一种降噪算法 总被引:7,自引:1,他引:7
白噪声的方差和幅值随着小波变换尺度的增加会逐渐减小 ,而信号的方差和幅值与小波变换的尺度变化无关。因此 ,文章提出一种以小波包能量为基础 ,以降低原始信号与降噪后信号之间的均方误差 (MSE)为目标的基于小波包的降噪算法 ,并与传统的 Donoho的硬阈值降噪算法作了比较。仿真结果表明 ,该算法可以有效去除白噪声干扰 ,并且明显优于传统的 Donoho的硬阈值降噪算法。 相似文献
17.
为了检测内燃机气阀漏气的气密性故障,利用小波包分解改进算法,通过对柴油机完整工作循环内的缸盖振动信号进行小波包分解,从小波包分解系数中提取柴油机振动诊断的整循环征兆.由整循环特征向量图表明,正常状态时柴油机气缸盖振动信号中低频部分能量相对较大,高频部分能量相对较小;漏气状况时振动信号中的低频部分能量减小,而高频部分能量增加,由此实现了故障的识别.这说明基于小波包分解的整循环征兆提取与故障识别方法有效、可行. 相似文献
18.
基于小波包熵的船舶轴频电场信号检测 总被引:2,自引:0,他引:2
为了有效地从海洋环境电场背景中检测微弱的船舶轴频电场信号,提出了一种基于小波包熵的船舶轴频电场信号检测算法.首先使用小波包变换对测量信号进行多层分解并计算最后一层各结点的重构信号;然后计算各结点重构信号的小波包熵;最后选取小波包熵最小的重构信号作为检测信号进行滑动功率谱检测.通过实测数据和仿真数据对该算法和滑动功率谱算... 相似文献