共查询到18条相似文献,搜索用时 62 毫秒
1.
为了研究旋转机械的滚动轴承在复杂工况下从时变性强、微弱信号中提取特征信息的性能,提出了基于SIR多级残差连接密集网络的轴承故障诊断方法.首先,设计SIR模块,该模块将对输入的数据特征通道赋予不同的权重并拓宽网络的宽度,提取更加重要、更加丰富的特征信息;其次,设计多级残差连接密集网络自适应提取轴承振动信号中的有效特征;最后,构建softmax分类器实现故障分类.通过与多种方法进行对比,实验结果表明,该方法在变噪声、变负荷和变工况下都能够更加准确地检测出故障,对复杂的工况环境更具有鲁棒性和泛化能力. 相似文献
2.
滚动轴承作为旋转机械的重要组成部分,其运行安全性受到大量关注,但传统的基于信号处理的时频分析故障诊断方法较为依赖专家知识从而难以广泛应用。结合应用较广的卷积神经网络和长短时记忆网络模型的优点-自动提取振动信号的深层特征信息以及可识别所提取的长时连续的振动信号时序特征信息,提出一种深度特征提取神经网络模型,将原始的振动信号作为模型输入,进而通过多层卷积与长短时记忆网络对振动信号进行故障特征信息提取,可以有效提取滚动轴承振动信号中的深层时序故障特征信息,进而准确辨识滚动轴承不同的故障模式,并且避免了复杂的信号预处理与人工进行信号特征提取的过程。通过凯斯西储大学滚动轴承故障实验的10类健康状态数据验证了所提方法的有效性,并对实验结果进行分析,解释了在迭代过程中出现精度波动的可能原因。 相似文献
3.
4.
5.
为了解决目前常用的最大池化丢失大量信息和平均池化模糊重要特征的问题,提出了一种小尺度卷积核以跳动的方式进行降采样的方法。该方法用步长为2、激活函数为Rectified Linear Unit(ReLU)的小尺度卷积层代替传统的池化层,既可以使输出图像的尺寸变成输入的一半,实现降采样的功能,又能让小尺度卷积核在训练中自动调整权重挑选有效的特征。与最大池化相比,该方法可有效地提高神经元激活比例并增加神经元活性值的多样性。综合采用提出的池化方法、深度可分离卷积核和全局平均池化层3个策略改进的深度卷积神经网络,在实验室变转速多滚动轴承数据集上进行测试,结果表明,改进后的网络识别正确率达到98.4%,高于作为对比的其他网络,同时还大幅提高了网络的稳定性,减少了40%以上的训练时间。提出的方法可以为科研技术人员在搭建深度卷积神经网络和变工况滚动轴承故障诊断时提供参考。 相似文献
6.
针对传统故障诊断方法未充分挖掘故障信号的时间序列间关联性特征的问题,将递归图编码技术引入故障诊断领域,提出了递归图编码技术与残差网络的滚动轴承故障诊断模型。采用递归图编码方式将振动信号转换为增强信号特征的二维纹理图像;将这些特征图像输入残差网络中,结合残差网络对二维图像数据优秀的自适应特征提取能力,对滚动轴承进行故障诊断。使用凯斯西储大学轴承数据集和某局机务段采集的真实机车轴承数据进行试验验证,结果表明:所提模型对轴承故障诊断的识别准确率为99.99%和99.83%;在输入不同的数据长度和变工况的试验中,所提模型均保持了良好的故障诊断效果;对比其他常见的故障诊断方法,所提模型拥有更好的泛化性能和识别准确率。 相似文献
7.
在对滚动轴承振动信号特征分析的基础上,建立了AR模型,利用AR模型参数建立径向基函数神经网络,并用该网络对滚动轴承的故障模式进行了识别。最后应用Matlab语言强大的计算功能,建立了滚动轴承故障诊断系统。理论和试验证明了该系统的有效性,且具有较高的识别精度。 相似文献
8.
为揭示滚动轴承故障振动信号的典型特征规律,结合变分模态分解(VMD)与深度置信网络(DBN)的优势,提出轴承振动信号特征的提取方法.将信号先进行基于VMD的分解,根据各模态分量频谱图确定其模态参数,得到若干个模态分量.然后,基于DBN强大的特征提取能力,采用DBN无监督特征提取方法,将得到的模态分量映射到一维,并融合各分量的DBN特征形成特征向量,将其作为粒子群优化支持向量机(PSO-SVM)的输入进行故障诊断.实验验证与对比分析证明了VMD-DBN方法的可行性与优越性. 相似文献
9.
基于神经网络的轴承故障诊断方法 总被引:2,自引:0,他引:2
研究了基于神经网络的轴承故障诊断方法,应用于球轴承、圆锥轴承和圆柱轴承在轴承疲劳试验机上实际运行产生的各种真实故障的诊断,结果表明:该方法具有较好的效果。 相似文献
10.
研究了基于BP神经网络、基于径向基神经网络等的故障诊断方法和原理,并利用小波包分解获得了滚动轴承振动信号的特征向量,进行了详细的故障诊断实验研究,通过实验,比较了基于松散型小波神经网络与紧致型小波神经网络的诊断结果。仿真结果表明,紧致型小波神经网络用于滚动轴承的故障诊断更为有效。 相似文献
11.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于抗噪多核卷积神经网络(anti-noise multi-core convolutional neural network,AMCNN)的轴承故障识别新方法。首先,对滚动轴承振动信号进行预处理,得到数据样本,分为训练集和测试集;然后建立轴承寿命状态识别模型,将标签化的训练集数据样本输入AMCNN中进行训练;最后,将训练后的AMCNN模型应用于测试集,输出故障识别结果。在训练过程中,为抑制过拟合,对原始训练样本进行加噪处理;为提高模型抗干扰能力,将dropout层作为AMCNN的第一层。运用轴承实验数据对识别模型进行检验,通过对比验证,结果表明所提出的识别方法在高噪声环境下能更准确地实现轴承故障状态识别。 相似文献
12.
针对强背景噪声下非高斯脉冲噪声和高斯噪声对滚动轴承故障诊断产生严重干扰的问题,提出了一种基于改进变分模态分解(variational mode decomposition, VMD)并与循环相关熵谱(cyclic correntropy spectrum, CCES)相结合的故障诊断方法。首先,针对VMD传统重构指标易受噪声影响的问题,引入相关熵峭度(correlation entropy kurtosis index, CEK)指标对VMD分解后的模态分量进行选择与重构,去除高斯噪声;然后针对重构后信号仍存在的脉冲噪声影响问题,对重构信号进行CCES投影融合去除非高斯脉冲噪声干扰并增强特征;最后对融合结果进行分析与故障诊断。经仿真测试与实验表明,所提出的方法可以在高斯噪声和非高斯脉冲噪声背景下有效提取滚动轴承故障特征频率并实现故障诊断。 相似文献
13.
基于RBF神经网络的锅炉燃烧系统故障诊断 总被引:3,自引:1,他引:3
为了提高锅炉燃烧控制系统的可靠性,针对热力系统自身的特点,基于热力系统的解析冗余理论,提出用RBF神经网络构建状态观测器,对传感器和执行机构进行故障检测与诊断的新方法。采用正交最小二乘法(OLS)训练神经网络。在锅炉负荷控制系统中采用这一方法,对传感器和执行机构构建状态观测器,通过分析比较传感器及其观测器输出和残差、执行机构及其观测器的输出和残差,就可以进行故障诊断。实验结果表明:该方法可以有效地进行锅炉燃烧控制系统故障检测和诊断。 相似文献
14.
文章将粗糙集理论、模糊逻辑推理和神经网络等方法相结合,提出一种基于粗糙集的模糊神经网络理论的复杂机械的故障诊断方法。该方法应用模糊逻辑推理建立故障诊断决策表,采用粗糙集理论对故障样本数据属性约简,将获取的主要特征属性输入到神经网络中进行训练学习,然后把检测数据输入到诊断系统中进行检测。检测结果表明,该方法在船舶柴油机的故障诊断中是有效的。 相似文献
15.
递阶结构进化神经网络在故障诊断中的应用 总被引:3,自引:0,他引:3
主要研究进化神经网络在旋转机械故障诊断中的应用 ,提出了一种基于递阶结构的遗传算法与进化规划相结合的神经网络学习新算法 ,利用该算法可以同时对网络进行结构优化和权重求解。通过旋转机械故障分类应用实例 ,与传统的 BP训练算法作了比较 ,证明基于递阶结构的进化神经网络算法不仅在权重训练方面比传统 BP训练算法更加快速稳定 ,避免陷入局部极小点 ,而且同时对网络结构进行了优化 ,得到了结构更为简捷的旋转机械故障分类网络 相似文献
16.
针对轴承振动信号的不确定性和非平稳性以及BP神经网络学习算法收敛速度慢、稳定性差等问题,提出了基于云模型和集成极限学习机的滚动轴承故障模式识别方法.将经预处理之后的信号进行云化,产生滚动轴承在不同状态下的信号云;提取出决定信号云分布的期望、熵和超熵三个参数作为表征轴承状态的特征量并依此构造出原始的轴承状态数据集;再将故... 相似文献
17.
18.
基于多级神经网络的指挥仪电路故障诊断 总被引:5,自引:0,他引:5
针对某指挥仪电路故障诊断专家系统的不足之处,用层次结构的多级人工神经网络进行电路的故障诊断,用专家知识对学习样本进行筛选,通过对该电路中差分电路模块的诊断实验表明,可以克服专家系统对某些故障无法诊断的不足,而且还可以实现多故障的诊断。 相似文献