首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
基于粒子群优化算法的气动参数在线辨识方法   总被引:1,自引:0,他引:1  
对再入式高超声速飞行器的气动参数在线辨识方法进行了分析研究,采用滤波器对动态方程进行静态化处理,以简化辨识方法,但同时引入了不确定的滤波器参数.为了减小辨识过程中由滤波器参数选择引起的辨识误差,设计了一种参数选择策略.在常规选择参数的基础上引入了智能优化算法——粒子群优化算法,用以确定合适的滤波器参数值.然后,利用基于带遗忘因子的最小二乘法对时变气动参数进行在线辨识.最后基于SX-2模型进行了相关仿真.结果表明:基于粒子群优化算法的气动参数在线辨识方法与未引入参数选择策略的气动参数在线辨识方法相比,辨识精度得到了一定程度的提高.  相似文献   

2.
为了有效获取伺服系统机械传动部分的谐振特性,在分析二质量系统模型的基础上,提出了用于参数辨识的粒子群算法.该方法首先利用二质量系统的运动方程对负载侧的摩擦转矩进行了估算,然后设计了特定信号激励系统,获取电机转矩电流和转速,最后采用粒子群算法对二质量系统中的等效电机转动惯量、等效负载转动惯量、系统谐振频率以及阻尼比进行了辨识.实验结果证明辨识得到的系统参数能够准确描述系统的特性,有助于控制器的精确设计.  相似文献   

3.
采用混沌粒子群优化算法的水质模型参数辨识   总被引:2,自引:0,他引:2  
提出了一种新的适用于水质模型参数辨识的混沌粒子群优化(LCPSO)算法.与粒子群优化(PSO)算法相比,该算法将Logistic混沌搜索嵌入到PSO算法中,利用混沌变量产生初始粒群,并对子代部分粒子群体进行微小扰动,随着搜索过程的深入逐步调整扰动幅度,以克服PSO算法的早熟、易陷入局部极值等固有缺陷.采用标准测试函数,将该算法与遗传算法(GA)和PSO算法进行比较,证明了其收敛速度和寻优能力的优越性.采用实测水质数据,将LCPSO算法应用于具有一定工程价值和复杂程度的Dobbins-Camp BOD-DO水质模型的参数辨识.结果显示,所得水质数据与实测值误差平方和仅为0.150 3,且相对误差在±0.2%范围内,故该算法可为水质模型的参数辨识提供一条新的途径.  相似文献   

4.
针对标准粒子群优化(PSO)算法存在易早熟收敛的缺点,提出了一种基于天体系统模型的粒子群优化算法(CSPSO).在CSPSO算法中,参照天文学中的天体系统模型,将种群划分为多个相对独立的天体系统,每个系统按照自己的运行规则在不同的空间中运行,在算法的后期引入混沌优化,最终确定出优化问题的全局最优解.将CSPSO算法应用于异步电机参数辨识问题中,仿真结果表明CSPSO算法比GA算法和PSO算法具有更精确的参数辨识能力.  相似文献   

5.
粒子群优化算法收敛性分析   总被引:8,自引:0,他引:8  
对粒子群优化算法的收敛性进行了分析,给出了收敛条件,数值试验计算验证了收敛性分析结果。讨论了粒子群优化算法参数选取的基本原则。  相似文献   

6.
王力维 《科技信息》2007,(25):50-50,244
神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP或其它梯度算法,导致训练时间较长且易陷入局部极小点,本文探讨用粒子群优化算法训练神经网络,并应用到钻削加工参数优化中,试验表明粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。  相似文献   

7.
根据参数化组合算子方法建立了水质评价模型,应用粒子群优化算法确定模型中的参数,并将该模型分别应用于富营养化海水、地下水与地表水的水质评价.案例分析结果表明,基于粒子群算法的参数化组合算子水质评价模型对各类水体的水质评价结果与传统方法基本一致,具有方法简单、计算量小和适用于非线性水质评价问题的特点.  相似文献   

8.
大规模的风电并网使得电力系统的安全运行受到了挑战,建立高精度风电场模型有利于维护电网的稳定运行。本研究以河西地区马鬃山和酒泉风电场为研究对象,基于粒子群算法,结合马鬃山和酒泉风速数据对威布尔模型中的形状系数和尺度系数进行辨识。以实际值与辨识值误差的平方和最小为目标函数,得到了较高精度的风电场参数值。通过与穷举算法的辨识结果进行对比,本研究的粒子群算法能够获得更高精度的风电场模型。  相似文献   

9.
针对励磁系统参数实测及建模问题,提出了采用支持向量机和粒子群算法进行励磁系统参数频域辨识的方法.先用支持向量机方法来提取特征样本,然后采用粒子群算法和这些少量的特征样本对励磁系统进行参数辨识.用支持向量机筛选出的特征样本一方面可以减少粒子群算法的计算时间,另一方面还可以提高模型的辨识精度.实际算例表明粒子群算法用于频域辨识时实现过程简单,对简单模型和复杂模型都可以得到较好的辨识效果.  相似文献   

10.
基本粒子群算法(PSO)存在早熟问题,且惯性权重对参数辨识结果的影响较大,为此提出将变权重PSO算法和全局最优位置变异PSO算法相结合的改进PSO算法,并将其应用于双馈感应发电机(DFIG)的参数辨识。分析了DFIG中各参数的可辨识性和辨识难易度,给出了基于改进PSO算法的参数辨识步骤。与采用基本PSO算法、变权重PSO算法和全局最优位置变异PSO算法的参数辨识结果相比较,该方法具有收敛速度快、辨识误差小的优点,即使在较大的搜索范围内仍具有较高的辨识精度。  相似文献   

11.
王志刚 《科学技术与工程》2012,12(19):4686-4690
在Kennedy和Eberhart的二进制粒子群优化算法(BPSO)的基础上提出一种利用种群平均信息的二进制粒子群优化算法。新算法利用种群个体极值的平均信息和粒子的个体极值决定粒子当前取值的概率,使粒子可以充分利用整个种群的信息。通过测试函数优化和0—1背包问题,结果表明该算法具有较好的收敛速度和稳定性,求解结果要优于BPSO和一些改进算法。  相似文献   

12.
针对流程系统优化中的非线性规划问题,提出了一种新的混合优化算法--简约微粒群优化算法,并对其求解.利用实例对其进行测试并与其他算法所得的结果进行比较,结果表明,简约微粒群算法是一种有效的求解具有线性约束的NLP问题的方法.  相似文献   

13.
In recent years, numerical weather forecasting has been increasingly emphasized. Variational data assimilation furnishes precise initial values for numerical forecasting models, constituting an inherently nonlinear optimization challenge. The enormity of the dataset under consideration gives rise to substantial computational burdens, complex modeling, and high hardware requirements. This paper employs the Dual-Population Particle Swarm Optimization(DPSO) algorithm in variational data assimilatio...  相似文献   

14.
利用粒子群算法的传感器优化布置及结构损伤识别研究   总被引:1,自引:0,他引:1  
为了合理布置结构健康监测系统中传感器的位置及满足结构损伤识别的要求,提出了一种基于改进粒子群算法的传感器优化布置方法。首先以模态保证准则(MAC)矩阵的最大非对角元极小化为目标,构造出满足优化条件的适应度函数,并采用改进的粒子群算法搜索出传感器的最佳布设位置;其次,利用振型扩充技术把有限测点的测量模态数据扩充为完整自由度模态数据,并利用所提损伤识别方法进行结构损伤识别;最后,通过一个二维平面桁架结构算例对所提方法进行有效性验证。数值结果表明,所提传感器布设方法能够高效地搜索出给定数目的传感器优化位置,且利用其优化结果能够准确地识别出结构的损伤位置和程度。  相似文献   

15.
16.
闭环时滞模型参数的辨识一直是先进工业控制领域的一个重要课题。然而由于时滞的存在,被控量不能及时地反映系统所承受的扰动,从而产生明显的超调,使得控制系统的稳定性变差。本文充分利用粒子群优化算法收敛速度较快和混沌运动遍历性的优点,提出了一种基于混沌优化思想的混沌粒子群优化算法来直接辨识含有滞后环节的被控对象的闭环传递函数,而不用将其转化为状态方程。将闭环时滞系统的传递函数通过z变换转化为离散的差分方程,对于滞后环节的处理,用一阶Pade近似。利用CPSO的全局优化能力来极小化误差准则函数,从而获得模型参数的估计值。仿真实验结果证明:该方法收敛速度较快、辨识得到的参数精度较高,适用于实际的工业生产。该方法与辅助变量最小二乘方法相比,计算量小、过程简单、不用计算多重积分、辨识速度较快、辨识精度高。  相似文献   

17.
粒子群优化算法   总被引:1,自引:0,他引:1  
论述粒子群优化算法(PSO)的基本原理、特点、实现步骤,以及PSO的各种改进技术,包括基于PSO参数的改进技术(主要是惯性权重)、基于遗传算法进化机理的改进技术(受遗传算法启发提出的带交叉算子的PSO、带变异算子的PSO、带选择算子的PSO),以及其他算法融合的改进技术(模拟退火PSO、免疫PSO、混沌PSO),并总结PSO热点研究问题.  相似文献   

18.
针对粒子群算法在寻优中存在早熟和收敛精度不高等问题,论文对粒子位置的更新策略以及更新公式进行改进,提出了一种新的简化粒子群优化算法(New Simple Particle Swarm Optimization,NSPSO),并将其在15个多极值基准函数进行全局最优化测试,实验结果表明,NSPSO算法收敛的精度大大提高了,而且算法收敛速度也很快,对于高、低维复杂函数的优化均适用.  相似文献   

19.
全局粒子群优化算法   总被引:1,自引:0,他引:1  
针对粒子群优化算法在解决大维数的无约束优化问题时具有较差的收敛性和稳定性,提出了一种全局粒子群优化(GPSO)算法.GPSO算法引入了一种新的惯性权重,它被定义为一个指数型函数与一个随机数的乘积,这有利于维持算法的全局搜索和局部搜索.同时,GPSO算法对全局最优解进行了小的扰动,这可以有效地避免算法早熟.使用三种粒子群优化算法来解决6个无约束优化问题.仿真结果说明,与其他两种粒子群优化算法相比,GPSO算法具有更快的收敛速度和更强的逃离局部最优的能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号