首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytotoxic (CD8+) and helper (CD4+) T cells play a crucial role in resolving infections by intracellular pathogens. The development of technologies to visualize antigen-specific T cell responses in mice and men over the past decade has allowed a dissection of the formation of adaptive T cell immunity. This review gives a brief overview of the currently used detection techniques and possible future additions. Furthermore, we discuss our current understanding of the formation of antigen-specific T cell responses, with particular attention to the similarities and differences in CD4+ and CD8+ T cell responses, the functional heterogeneity within responder T cell pools and the regulation of CD8+ T cell responses by dendritic cells and CD4+ helper T cells. Received 16 June 2005; received after revision 2 August 2005; accepted 15 August 2005  相似文献   

2.
CD4+CD25+Foxp3+ regulatory T cells (Treg cells) are critical for the maintenance of peripheral tolerance, and the suppression of autoimmune diseases and even tumors. Although Treg cells are well characterized in humans, little is known regarding their existence or occurrence in ancient vertebrates. In the present study, we report on the molecular and functional characterization of a Treg-like subset with the phenotype CD4-2+CD25-like+Foxp3-like+ from a pufferfish (Tetraodon nigroviridis) model. Functional studies showed that depletion of this subset produced an enhanced mixed lymphocyte reaction (MLR) and nonspecific cytotoxic cell (NCC) activity in vitro, as well as inflammation of the intestine in vivo. The data presented here will not only enrich the knowledge of fish immunology but will also be beneficial for a better cross-species understanding of the evolutionary history of the Treg family and Treg-mediated regulatory networks in cellular immunity.  相似文献   

3.
Adaptive immunity critically contributes to control acute infection with enteropathogenic Yersinia pseudotuberculosis; however, the role of CD4+ T cell subsets in establishing infection and allowing pathogen persistence remains elusive. Here, we assessed the modulatory capacity of Y. pseudotuberculosis on CD4+ T cell differentiation. Using in vivo assays, we report that infection with Y. pseudotuberculosis resulted in enhanced priming of IL-17-producing T cells (Th17 cells), whereas induction of Foxp3+ regulatory T cells (Tregs) was severely disrupted in gut-draining mesenteric lymph nodes (mLNs), in line with altered frequencies of tolerogenic and proinflammatory dendritic cell (DC) subsets within mLNs. Additionally, by using a DC-free in vitro system, we could demonstrate that Y. pseudotuberculosis can directly modulate T cell receptor (TCR) downstream signaling within naïve CD4+ T cells and Tregs via injection of effector molecules through the type III secretion system, thereby affecting their functional properties. Importantly, modulation of naïve CD4+ T cells by Y. pseudotuberculosis resulted in an enhanced Th17 differentiation and decreased induction of Foxp3+ Tregs in vitro. These findings shed light to the adjustment of the Th17-Treg axis in response to acute Y. pseudotuberculosis infection and highlight the direct modulation of CD4+ T cell subsets by altering their TCR downstream signaling.  相似文献   

4.
The NLRP3 inflammasome is a critical innate immune pathway responsible for producing active interleukin (IL)-1β, which is associated with tumor development and immunity. However, the mechanisms regulating the inflammatory microenvironment, tumorigenesis and tumor immunity are unclear. Herein, we show that the NLRP3 inflammasome was over-expressed in human HNSCC tissues and that the IL-1β concentration was increased in the peripheral blood of HNSCC patients. Additionally, elevated NLRP3 inflammasome levels were detected in tumor tissues of Tgfbr1/Pten 2cKO HNSCC mice, and elevated IL-1β levels were detected in the peripheral blood serum, spleen, draining lymph nodes and tumor tissues. Blocking NLRP3 inflammasome activation using MCC950 remarkably reduced IL-1β production in an HNSCC mouse model and reduced the numbers of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated macrophages (TAMs). Moreover, inhibiting NLRP3 inflammasome activation increased the numbers of CD4+ and CD8+ T cells in HNSCC mice. Notably, the numbers of exhausted PD-1+ and Tim3+ T cells were significantly reduced. A human HNSCC tissue microarray showed that NLRP3 inflammasome expression was correlated with the expression of CD8 and CD4, the Treg marker Foxp3, the MDSC markers CD11b and CD33, and the TAM markers CD68 and CD163, PD-1 and Tim3. Overall, our results demonstrate that the NLRP3 inflammasome/IL-1β pathway promotes tumorigenesis in HNSCC and inactivation of this pathway delays tumor growth, accompanied by decreased immunosuppressive cell accumulation and an increased number of effector T cells. Thus, inhibition of the tumor microenvironment through the NLRP3 inflammasome/IL-1β pathway may provide a novel approach for HNSCC therapy.  相似文献   

5.
Gangliosides are major components of highly organized membrane microdomains or rafts, yet little is known about the role of gangliosides in raft organization. This is also the case of gangliosides in TCR-mediated activation. Comprehensive structural analysis of gangliosides in the primary thymocytes and CD4+ T and CD8+ T cells was not achieved due to technical difficulties. We have found that CD8+ T cells express very high levels of o-series gangliosides, but on the other hand, CD4+ T cells preferably express a-series gangliosides. In the TCR-dependent activation, CD4+ T cells selectively require a-series gangliosides, but CD8+ T cells do require only o-series gangliosides but not a-series gangliosides. Ganglioside GM3 synthase-deficient mice lacking a-series gangliosides neither exhibited the TCR-dependent activation of CD4+ T nor developed ovalbumin-induced allergic airway inflammation. These findings imply that the distinct expression pattern of ganglioside species in CD4+ and CD8+ T cells define the immune function of each T cell subset.  相似文献   

6.
IgG is a molecule that functionally combines facets of both innate and adaptive immunity and therefore bridges both arms of the immune system. On the one hand, IgG is created by adaptive immune cells, but can be generated by B cells independently of T cell help. On the other hand, once secreted, IgG can rapidly deliver antigens into intracellular processing pathways, which enable efficient priming of T cell responses towards epitopes from the cognate antigen initially bound by the IgG. While this process has long been known to participate in CD4+ T cell activation, IgG-mediated delivery of exogenous antigens into a major histocompatibility complex (MHC) class I processing pathway has received less attention. The coordinated engagement of IgG with IgG receptors expressed on the cell-surface (FcγR) and within the endolysosomal system (FcRn) is a highly potent means to deliver antigen into processing pathways that promote cross-presentation of MHC class I and presentation of MHC class II-restricted epitopes within the same dendritic cell. This review focuses on the mechanisms by which IgG-containing immune complexes mediate such cross-presentation and the implications that this understanding has for manipulation of immune-mediated diseases that depend upon or are due to the activities of CD8+ T cells.  相似文献   

7.
Naïve CD4+ T cells undergo massive cell proliferation upon encountering their cognate ligand. This proliferation depends upon appropriate cues from the antigen-presenting cells that have processed the antigen and present the peptide to the T cells, and requires the establishment of a cytokine environment that can support such proliferation. Expansion of antigen-specific CD4+ T cells needs to be coupled with differentiation into one of several effector/regulatory phenotypes if the priming event is to result in cells that can initially act to control the particular pathogen that elicited the response, and later to serve as memory cells to insure an appropriate response upon reintroduction of the pathogen. Here, we discuss the initiation of T helper lineage commitment, the positive feedback regulation by the cytokine environment to enhance and stabilize the differentiation into distinct T helper subsets, and the biological significance of CD4+ T cell plasticity and long-term CD4+ T cell memory.  相似文献   

8.
Regulatory T cells (Tregs) are a critical subset of T cells that mediate peripheral tolerance. There are two types of Tregs: natural Tregs, which develop in the thymus, and induced Tregs, which are derived from naive CD4+ T cells in the periphery. Tregs utilize a variety of mechanisms to suppress the immune response. While Tregs are critical for the peripheral maintenance of potential autoreactive T cells, they can also be detrimental by preventing effective anti-tumor responses and sterilizing immunity against pathogens. In this review, we will discuss the development of natural and induced Tregs as well as the role of Tregs in a variety of disease settings and the mechanisms they utilize for suppression. C. J. Workman, A. L. Szymczak-Workman, L. W. Collison, and M. R. Pillai contributed equally.  相似文献   

9.
Human cytomegalovirus (HCMV) persists after infection but is controlled by cellular immune responses, particularly by CD8+ T cells. If infected individuals are immunosuppressed, HCMV can be reactivated. Upon testing the blood of healthy donors with human lymphocyte antigen tetramers, we found one individual with about 50 % of his CD8+ T cells being specific for the immunodominant pp65 epitope NLVPMVATV. Over a period of 2 years the high level of HCMV-specific T cells was maintained, and no HCMV DNA could be detected. At one timepoint, however, HCMV-specific DNA was detected, while 65 % of CD8+ T cells were specific for HCMV. When virus was detectable, a lower percentage of HCMV-specific CD8+ T cells showed interferon γ (IFN-γ) production after peptide stimulation in vitro. These data suggest that HCMV reactivation may also occur in immunocompetent persons, accompanied by the presence of HCMV-specific CD8+ T cells which are not producing IFNγ, and therefore potentially anergic or in vivo exhausted. Received 6 March 2002; received after revision 15 April 2002; accepted 17 April 2002  相似文献   

10.
Cancer stem cells (CSCs) play an important role in the development, invasion, and drug resistance of carcinoma, but the exact phenotype and characteristics of ovarian CSCs are still disputable. In this study, we identified cancer stem cell-like cells (CSC-LCs) and investigated their characteristics from the ovarian adenocarcinoma cell line 3AO. Our results showed that CSC-LCs were enriched in sphere-forming test and highly expressed CD44+CD24. The spheres and CD24 cells possessed strong tumorigenic ability by transplantation into nonobese diabetic/severe combined immunodeficient mice. CD44+CD24 cells expressed stem cell markers and differentiated to CD44+CD24+ cells by immunofluorescence assay and fluorescence-activated cell-sorting analysis. In vitro experiments verified that CD44+CD24 cells were markedly resistant to carboplatin and paclitaxol. In conclusion, our study identifies the CD44+CD24 phenotype, self-renewal, high tumorigenicity, differentiation potential, and drug resistance of ovarian CSC-LCs. Our findings may provide the evidence needed to explore a new strategy in the treatment of ovarian cancer.  相似文献   

11.
Cancer stem cells have been hypothesized to drive the growth and metastasis of tumors. Because they need to be targeted for cancer treatment, they have been isolated from many solid cancers. However, cancer stem cells from primary human gastric cancer tissues have not been isolated as yet. For the isolation, we used two cell surface markers: the epithelial cell adhesion molecule (EpCAM) and CD44. When analyzed by flow cytometry, the EpCAM+/CD44+ population accounts for 4.5% of tumor cells. EpCAM+/CD44+ gastric cancer cells formed tumors in immunocompromised mice; however, EpCAM?/CD44?, EpCAM+/CD44? and EpCAM?/CD44+ cells failed to do so. Xenografts of EpCAM+/CD44+ gastric cancer cells maintained a differentiated phenotype and reproduced the morphological and phenotypical heterogeneity of the original gastric tumor tissues. The tumorigenic subpopulation was serially passaged for several generations without significant phenotypic alterations. Moreover, EpCAM+/CD44+, but not EpCAM?/CD44?, EpCAM+/CD44? or EpCAM?/CD44+ cells grew exponentially in vitro as cancer spheres in serum-free medium, maintaining the tumorigenicity. Interestingly, a single cancer stem cell generated a cancer sphere that contained various differentiated cells, supporting multi-potency and self-renewal of a cancer stem cell. EpCAM+/CD44+ cells had greater resistance to anti-cancer drugs than other subpopulation cells. The above in vivo and in vitro results suggest that cancer stem cells, which are enriched in the EpCAM+/CD44+ subpopulation of gastric cancer cells, provide an ideal model system for cancer stem cell research.  相似文献   

12.
This study has been carried out in order to investigate seasonal variation in peripheral blood immune cells, such as leukocytes, monocytes, neutrophils, lymphocytes, CD3+ T, CD4+ T, CD8+ t, CD25+ T, CD20+ B, and serum interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R) and sIL-2R levels in normal volunteers. Toward this end, 26 normal volunteers (13 men, 13 women) had monthly blood samplings during one calendar year for peripheral blood count, flow cytometric enumeration of peripheral leukocyte subsets and immunoassays of IL-6, sIL-6R and sIL-2R. It was found that most of the immune variables change rhythmically during the seasons as a group phenomenon. Statistically significant yearly variations with seasonal rhythms, i.e. annual rhythms or harmonics, such as semiannual, tetramensual and trimensual rhythms, were found in the number of leukocytes, neutrophils, monocytes, lymphocytes, CD4+ T, CD8+ T, CD25+ T, CD20+ B cells, in the CD4+/CD8+ ratio, and serum IL-6 and sIL-6R levels. It is concluded that the immune system is characterized by a multifrequency time-structure with significant high-amplitude yearly variations in the number of some peripheral blood leukocyte subsets.  相似文献   

13.
In higher organisms, innate scavenging cells maintain physiologic homeostasis by removal of the billions of apoptotic cells generated on a daily basis. Apoptotic cell removal requires efficient recognition and uptake by professional and non-professional phagocytic cells, which are governed by an array of soluble and apoptotic cell-integral signals resulting in immunologically silent clearance. While apoptosis is associated with profound suppression of adaptive and innate inflammatory immunity, we have only begun to scratch the surface in understanding how immunologic tolerance to apoptotic self manifest at either the molecular or cellular level. In the last 10 years, data has emerged implicating professional phagocytes, most notably stromal macrophages and CD8α+CD103+ dendritic cells, as critical in initiation of the regulatory cascade that will ultimately lead to long-term whole-animal immune tolerance. Importantly, recent work by our lab and others has shown that alterations in apoptotic cell perception by the innate immune system either by removal of critical phagocytic sentinels in secondary lymphoid organs or blockage of immunosuppressive pathways leads to pronounced inflammation with a breakdown of tolerance towards self. This challenges the paradigm that apoptotic cells are inherently immunosuppressive, suggesting that apoptotic cell tolerance is a “context-dependent” event.  相似文献   

14.
2-Carboxyethylgermanium sesquioxide (Ge-132), a synthesized organogermanium compound with immunomodulaing activities, was shown to be an inducer of anti-suppressor T cells in normal mice. The suppressor cell activity of T6S cells, a clone of burn-induced CD8+ IL-4-producing suppressor T cells, was clearly inhibited when a mixed lymphocyte-tumor cell reaction of the clone was conducted with splenic mononuclear cells from mice treated orally with a 100 mg/kg dose of Ge-132. The activity of anti-suppressor cells was demonstrated in spleens of mice 2 days after treatment with Ge-132 and reached its peak on day 3. The anti-suppressor cells induced by the compound were of a contrasuppressor T cell-linage, because they were characterized as CD4+ CD28+ TCR/+ Vicia villosa lectin-adherent T cells. These cells produced IFN- but did not produce IL-2, IL-4, IL-6 or IL-10 in their culture fluids. CD4+ anti-suppressor T cells induced by Ge-132 may be different from other subsets of CD4+ T cells because Th1 and Th2 cells generated in our laboratory did not adhere toVicia villosa lectin-coated petri dishes, and each produced specific cytokines. Th1 cells produced IFN- and IL-2 while Th2 cells produce IL-4 and IL-10 in vitro. These results suggest that Ge-132 may be useful as an inducer of contrasuppressor T cells in immunocompromised individuals bearing suppressor T cells. To eliminate suppressor T cells from immunocompromised hosts may result in improved resistance from various opportunistic infections.  相似文献   

15.
Autoreactive CD8+ regulatory T cells (Tregs) play important roles as modulators of immune responses against self, and numerical and functional defects in CD8+ Tregs have been linked to autoimmunity. Several subsets of CD8+ Tregs have been described. However, the origin of these T cells and how they participate in the natural progression of autoimmunity remain poorly defined. We discuss several lines of evidence suggesting that the autoimmune process itself promotes the development of autoregulatory CD8+ T cells. We posit that chronic autoantigenic exposure fosters the differentiation of non-pathogenic autoreactive CD8+ T cells into antigen-experienced, memory-like autoregulatory T cells, to generate a “negative feedback” regulatory loop capable of countering pathogenic autoreactive effectors. This hypothesis predicts that approaches capable of boosting autoregulatory T cell memory will be able to blunt autoimmunity without compromising systemic immunity.  相似文献   

16.
During the past two decades of research in T cell biology, an increasing number of distinct T cell subsets arising during the transition from naïve to antigen-experienced T cells have been identified. Recently, it has been appreciated that, in different experimental settings, distinct T cell subsets can be generated in parallel within the same immune response. While signals driving a single “lineage” path of T cell differentiation are becoming increasingly clear, it remains largely enigmatic how the phenotypic and functional diversification creating a multi-faceted T cell response is achieved. Here, we review current literature indicating that diversification is a stable trait of CD8+ T cell responses. We showcase novel technologies providing deeper insights into the process of diversification among the descendants of individual T cells, and introduce two models that emphasize either intrinsic noise or extrinsic signals as driving forces behind the diversification of single cell-derived T cell progeny populations in vivo.  相似文献   

17.
Adaptive immunity plays a critical role in IR and T2DM development; however, the biological mechanisms linking T cell costimulation and glucose metabolism have not been fully elucidated. In this study, we demonstrated that the costimulatory molecule OX40 controls T cell activation and IR development. Inflammatory cell accumulation and enhanced proinflammatory gene expression, as well as high OX40 expression levels on CD4+ T cells, were observed in the adipose tissues of mice with diet-induced obesity. OX40-KO mice exhibited significantly less weight gain and lower fasting glucose levels than those of WT mice, without obvious adipose tissue inflammation. The effects of OX40 on IR are mechanistically linked to the promotion of T cell activation, Th1 cell differentiation and proliferation—as well as the attenuation of Treg suppressive activity and the enhancement of proinflammatory cytokine production—in adipose tissues. Furthermore, OX40 expression on T cells was positively associated with obesity in humans, suggesting that our findings are clinically relevant. In summary, our study revealed that OX40 in CD4+ T cells is crucial for adipose tissue inflammation and IR development. Therefore, the OX40 signaling pathway may be a new target for preventing or treating obesity-related IR and T2DM.  相似文献   

18.
Autoimmune diseases result from a combination of genetic, immunologic, hormonal, and environmental factors. Infectious agents may induce the breakdown of immunological tolerance and the appearance of autoreactivity. However, the specific relationship between infection and autoimmunity is still unclear. One of the mechanisms responsible could be molecular mimicry between the infectious agent and self. The concept of molecular mimicry is a viable hypothesis in the investigation of the etiology, pathogenesis, treatment, and prevention of autoimmune disorders. Immune-mediated (type 1) diabetes in humans and in non-obese diabetic (NOD) mice is polygenic and characterized by autoimmune destruction of insulin-producing pancreatic beta cells in islets of Langerhans. In NOD mice, a T-helper 1 (Th1)-based autoimmune response arises spontaneously against glutamate decarboxylase (GAD) concurrently with the onset of insulitis. Subsequently. this Th1-type autoreactivity spreads intra- and intermolecularly to other beta cell autoantigens, suggesting that a Th1-type response is responsible for the progression of the disease, whereas Th2 responses when experimentally induced are protective. In humans, a homology between GAD and the P2-C protein of Coxsackie B make a cause-and-effect molecular mimicry an attractive hypothesis. Evidence to support the concept of molecular mimicry in diabetes is reviewed.  相似文献   

19.
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K+, Na+, Ca2+ and Cl? across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K+ efflux through ATP-sensitive K+ (KATP) channels, the voltage-gated Ca2+ (CaV) channel-mediated Ca2+ influx and K+ efflux through voltage-gated K+ (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K+ efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca2+ influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K+ efflux mediated by KV2.1 delayed rectifier K+ channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca2+ entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.  相似文献   

20.
Non-adherent bone marrow-derived cells (NA-BMCs) are a mixed cell population that can give rise to multiple mesenchymal phenotypes and that facilitates hematopoietic recovery. We characterized NA-BMCs by flow cytometry, fibroblast colony-forming units (CFU-f), real-time PCR, and in in vivo experiments. In comparison to adherent cells, NA-BMCs expressed high levels of CD11b+ and CD90+ within the CD45+ cell fraction. CFU-f were significantly declining over the cultivation period, but NA-BMCs were still able to form CFU-f after 5 days. Gene expression analysis of allogeneic NA-BMCs compared to bone marrow (BM) indicates that NA-BMCs contain stromal, mesenchymal, endothelial cells and monocytes, but less osteoid, lymphoid, and erythroid cells, and hematopoietic stem cells. Histopathological data and analysis of weight showed an excellent recovery and organ repair of lethally irradiated mice after NA-BMC transplantation with a normal composition of the BM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号