首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚甲苯胺蓝修饰碳纤维微柱电极的制备及其电化学性质   总被引:1,自引:0,他引:1  
在pH 7.0的磷酸缓冲液中,用循环伏安法制备了聚甲苯胺蓝修饰碳纤维微柱电极.自制的碳纤维微柱电极分别在+2.5V恒电位极化30s,-1.0V恒电位极化30s后,电极活性得到明显改善,于 -0.8V~+0.8V的电位区间内循环扫描,即得到致密的聚甲苯胺蓝膜修饰碳纤维微柱电极.研究了聚甲苯胺蓝膜修饰碳纤维微柱电极的电化学性质和电催化性能,该膜对神经递质多巴胺有良好催化作用,催化峰电流与多巴胺浓度在3.0×10  相似文献   

2.
聚甲苯胺蓝膜修饰电极的电化学特性及其电催化性能研究   总被引:1,自引:0,他引:1  
用电聚合的方法制备了聚甲苯胺蓝膜玻璃电极,利用电化学手段研究了该膜电极的电化学特性,发现聚甲苯胺蓝膜电极对多巴胺,儿茶酚,等生物分子有较好的电催化性能,催化电流与其浓度在一定范围内呈线性关系。  相似文献   

3.
本文利用循环伏安法(CV)研究了聚酸性铬兰K薄膜修饰电极(PACBKE)的制备方法,讨论了缓冲体系及支持电解质的种类、浓度、扫描速率等因素对电极制备的影响.研究了神经递质多巴胺在PACBKE上的电化学行为,建立了测定多巴胺(DA)的新方法.DA浓度在5.3×10-6~5.3×10-4 mol/L范围内与氧化峰电流呈良好线性关系,线性回归方程和线性相关系数分别为:ip(μA)=2.78×104C(mol/L)+1.17,r=0.999 4,检出限可达3.2×10-7 mol/L.利用该法对样品进行定量分析,样品回收率范围为95.6%~103.3%,8次平行分析结果的相对标准偏差为1.9%,满足微量分析的要求.  相似文献   

4.
利用循环伏安法(CV)研究了荧光素(FS)在玻碳电极表面电聚合成膜的条件以及聚荧光素薄膜修饰电极(PFSE)的电化学性质.电聚合体系为:PBS(pH6.8) 0.1mol/L NaNO3 1.0×10-4 mol/L FS.将PFSE放入HCl溶液中进行循环伏安扫描,发现CV图中峰电流的大小与HCl浓度相关.当PFSE在1.0 mol/L HCl溶液中以不同的扫速进行循环伏安扫描时,CV图中峰电流的大小与扫描速率在V≤100mV/s范围内呈良好线性关系,相关系数为0.998 9.此外,PFSE对儿茶酚类物质也具有良好的电催化作用,可用于该类物质的分析测定.  相似文献   

5.
用电化学方法制备了过氧化聚吡咯膜修饰碳纤维微柱电极,并对其电化学行为进行了研究.结果表明,在中性和酸性缓冲溶液中,过氧化聚吡咯膜修饰微电极能有效地排除抗坏血酸的干扰而选择性地对多巴胺产生响应.  相似文献   

6.
聚中性红薄膜修饰电极的电化学特性研究   总被引:1,自引:0,他引:1  
利用循环伏安法 (CV)等电化学方法对聚中性红薄膜修饰电极 (PNRE)的电化学特性进行了详细的研究 .根据PNRE的各种电化学特性 ,对中性红的电化学聚合机理进行了推断 ,并对PNRE的电极反应机理进行了研究 ,得出了与实验现象相一致的结论 .  相似文献   

7.
利用循环伏安法(CV)等电化学方法对聚中性红薄膜修饰电极(PNRE)的电化学特性进行了详细的研究。根据PNRE的各种电化学特性,对中性红的电化学聚合机理进行了推断,并对PNRE的电极反应机理进行了研究,得出了与实验现象相一致的结论。  相似文献   

8.
采用电化学方法制得聚吡咯(PPy)膜修饰电极,经不同的化学方法处理,此类电极对溴(Br-)离子具有选择性效应,分别研究了溴(Br-)离子的掺杂效应及电极的电化学行为.  相似文献   

9.
用循环伏安法研究了亮甲酚蓝在活化的碳纤维微电极上电聚合成膜的方法和条件,并对该聚合膜修饰电极的电化学性质进行了探讨,该膜修饰的电极对多巴胺和维生素C有较强的催化作用,催化峰电流与底物浓度在一定范围内呈线性关系,并且,在一定的条件下,该膜修饰电极能有效消除多巴胺和维生素C的相互干扰,使多巴胺和维生素C的催化峰电位差达250mV,可用于多巴胺和维生素C的同时测定,用这种微电极对注射液中的多巴胺进行测定,回收率为96.7%-101.3%,该检测过程无需除氧,可望用于活体分析。  相似文献   

10.
在pH=6.69的PBS中灿烂甲酚蓝的循环伏安图上(扫描电位区间为-0.5V~0.5V)有一对氧化还原峰,峰电位分别为Ep.a=-0.24V和Ep.c=-0.35V。当扫描电位上限增至1.0V时,灿烂甲酚蓝发生电氧化聚合,最后在石墨碳电极上形成稳定的聚合物膜。该修饰膜电极的循环伏安图上亦有一对氧化还原峰,但峰电位分别正移至Ep.a=-0.050V和Ep.c=-0.125V,说明该聚合物不同于单体。同时该氧化峰,Ip.a与v^1/2成正比,说明电荷在膜中的传递为扩散控制。实验表明,亚硝酸盐能够在聚灿烂甲酚蓝膜修饰电极上被催化还原,黄嘌呤能够在聚灿烂甲酚蓝膜修饰电极上被催化氧化,且催化峰电流分别与亚硝酸根和黄嘌呤的浓度在一定范围内呈线性关系,可用于分析测定。  相似文献   

11.
提出了一种简单制备纳米级碳纤维电极的新方法.微米级碳纤维经电化学刻蚀后,用循环伏安扫描法电化学沉积电泳漆,再经烘烤,绝缘漆固化收缩后露出纳米级的碳纤维尖端,通过再次电化学沉积可缩小电极面积,从而制得可控直径的纳米电极.该法可克服传统电泳漆固化后易留下小针孔的缺陷.用铁氰化钾溶液表征,确定了纳米碳纤维电极的有效面积,制得的纳米碳纤维电极的半径为几十到几百纳米。  相似文献   

12.
聚核黄素膜修饰电极的制备及催化作用   总被引:4,自引:0,他引:4  
用循环伏安法聚合制备核黄素膜修饰电极 ,研究该修饰电极的电化学性质及电催化性能。聚核黄素膜在PBS底液中有一对氧化还原峰 ,氧化峰电流与υ1/ 2 在 10 0~70 0mV·s-1范围内成正比。该修饰电极在酸性和碱性溶液中对半胱氨酸均有显著的催化作用 ,且碱性溶液的电催化反应步骤中无H+ 参加  相似文献   

13.
用循环伏安法制备了聚吡咯亚硝酸根离子选择电极。表征电极的电化学性能。在1.0*10^-1-5.0*10^-5mol/L浓度范围内,电极电位与亚硝酸根离子浓度成良好从而验证了电极响应是基于要机理。  相似文献   

14.
采用电沉积方法将氧化石墨烯修饰到碳纤维电极表面,氧化石墨烯被还原从而制备石墨烯修饰的碳纤维微电极,考察多巴胺(DA)、尿酸(UA)、去甲肾上腺素(NE)以及铁氰化钾在修饰前后电极上的电化学行为.结果表明,在20 mmol/L pH值为7.4的Tris-HCl缓冲液中,氧化石墨烯经电沉积法得到的石墨烯修饰电极具有良好的稳定性和重现性,该修饰电极显著地提高了多巴胺和去甲肾上腺素的电化学响应,对DA和NE具有良好的电催化作用,在修饰电极上去甲肾上腺素和多巴胺的氧化过程受扩散控制.采用差示脉冲伏安法对NE和DA氧化峰电流与浓度的关系进行定量分析,DA氧化峰电流与浓度在1.0×10-7 ~ 1.0×10-4 mol/L范围内呈现良好的线性关系,线性回归方程为Ip=1×10-4 C+5×10-10,相关系数r=0.9906;NE氧化峰电流与浓度在1.0×10-7 ~ 1.0×10-4 mol/L范围内呈现良好的线性关系,线性回归方程为Ip=2×10-5C+7×10-11,r=0.9920.  相似文献   

15.
聚天冬氨酸修饰玻碳电极伏安法检测阿魏酸   总被引:1,自引:0,他引:1  
通过在水溶液中直接电聚合的方法制备了聚天冬氨酸修饰玻碳电极.在pH为4.5,0.1 mol.L-1HAc-NaAc缓冲溶液中,修饰电极对阿魏酸表现出良好的吸附能力,显著地提高了阿魏酸的电信号强度.探讨了聚天冬氨酸修饰玻碳电极的作用机理,建立了阿魏酸的快速检测方法.在浓度为9.1×10-7~3.0×10-3mol.L-1范围内,阿魏酸的微分脉冲氧化峰电流与其浓度呈线性关系,检出限为3.1×10-7mol.L-1.此方法用于中成药逍遥丸中痕量阿魏酸的检测,回收率为97.9%~102.2%.  相似文献   

16.
17.
甲苯胺蓝(TB)是一种应用很广的生化试剂,可作为一种光学活性的氧化还原指示剂用于化学分析,也可在医学上用于眼科以检查眼角膜缺陷等。在医学上的实际治疗效果与单体和二聚体之间相互平衡的转换有直接关系,并且甲苯胺蓝对紫外——可见吸收光谱有特定的吸收。应用紫外——可见光谱研究甲苯胺蓝单体和二聚体之间的平衡,揭示其在十二烷基硫酸钠(SLS)和十二烷基苯磺酸钠(DBS)存在下的聚合状态,同时解释在磷酸介质中抗坏血酸对甲苯胺蓝的还原作用。由紫外—可见光谱的谱图分析可知甲苯胺蓝的聚合状态与氧化还原性质密切联系。研究结果表明:甲苯胺蓝的性质与介质和各种添加剂均有关系。  相似文献   

18.
采用一步恒电位沉积的方法在玻碳电极上沉积纳米金颗粒,并运用循环伏安法对nano-Au/GCE的电化学性质进行了研究.结果表明,该修饰电极具有比表面积大、导电能力高等优点.另外,该文研究了8种不同的环境污染物在nano-Au/GCE修饰电极上的电化学行为,结果表明8种环境污染物在此修饰电极上有较高的检测灵敏度.因此,可以采用nano-Au/GCE修饰电极对一些有机污染物达到高灵敏的检测效果.  相似文献   

19.
利用循环伏安法和微分脉冲伏安法建立了聚亚甲基蓝-碳纳米管修饰玻碳电极测定肝素钠的电化学分析方法。在pH 4.5的B-R缓冲溶液中,聚亚甲基蓝与肝素钠通过静电作用形成复合物,导致聚亚甲基蓝的峰电流值降低。聚亚甲基蓝峰电流的降低值△Ip与肝素钠的浓度在0.33~17.13μg/mL范围内呈线性关系,线性方程为△Ip(μA)=1.6c+11.2(μg/mL),相关系数为0.994 6,检出限为0.09μg/mL。对5.74μg/mL肝素钠11次平行测定,相对标准偏差RSD为0.40%。  相似文献   

20.
纳米材料具有独特的催化活性和生物兼容性,发展纳米修饰电极,为生命科学提供有价值的检测手段。本文介绍了纳米材料及其性质,对纳米材料修饰电极在生物电化学中的应用做了重点探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号