首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了Ho3+/Yb3+和Er3+/Yb3+共掺氟氧化物玻璃的上转换发光性质.结果表明,在980 nm近红外激光激发下,Ho3+/Yb3+和Er3+/Yb3+共掺样品都呈现了强烈的上转换红光和绿光发射.随着Ho3+和Er3+浓度的增加,红光和绿光的强度都先增大后减小,x≈0.1%时发光强度达到最大,而后逐渐减小,它们的最佳掺杂量分布在低浓度区域.上转换发光强度和激发光功率的关系表明上转换红光和绿光发射都是双光子的吸收过程.  相似文献   

2.
在980nm近红外激光激发下,Tm3+/Yb3+共掺的新型氟氧化物玻璃呈现了强烈的上转换蓝光、红光和近红外光发射.随着Tm3+和Yb3+含量的增加,上转换蓝光和红光的强度都先增大后减小,它们的最佳掺杂物质的量分数分别为0.06%和3%.对上转换发光强度和激发光功率的关系进行了研究,研究表明上转换蓝光和红光发射都是三光子的吸收过程,近红外光的发射是两光子吸收过程.  相似文献   

3.
采用高温熔融冷却法制备了Tb3+,Ce3+掺杂和Tb3+/Ce3+共掺硼酸盐玻璃,并利用荧光光谱研究了其发光性能。结果表明:在紫外光激发下,Tb3+掺杂玻璃最强发射峰位于545 nm;Ce3+掺杂玻璃的发射光谱是峰值位于387 nm附近的不对称宽带;Tb3+/Ce3+共掺玻璃的发射光谱是由380 nm附近的不对称宽带和491,545,588,623 nm附近的4个发射峰组成;在Tb3+/Ce3+共掺玻璃中,Ce3+是Tb3+的高效敏化剂,Tb3+的发射强度是Tb3+掺杂玻璃的8倍以上。  相似文献   

4.
以氟化钇(YF_3)为基质材料,采用共沉淀法合成了YF_3:Yb~(3+)/Er~(3+)/Tm~(3+)上转换发光材料。采用X射线衍射仪(XRD)、热重差热分析仪(DTA)和荧光光谱分析对材料的物相结构、烧结温度和发光性质进行了研究。结果表明,掺入稀土离子没有改变YF3晶体结构,在980nm近红外波长激发下,出现了多个波段的发光现象,Yb~(3+)、Er~(3+)、Tm~(3+)不同的掺杂量分别对应于材料不同的发光规律。本文还探讨了上转换发光机制,确定了该体系荧光粉的最佳烧结温度。  相似文献   

5.
使用高温固相法制备了一种新的Bi3+,Yb3+共掺杂GdVO4量子裁剪近红外发光材料,该材料在波长为250~400nm的紫外光激发下发射出很强的近红外光(900~1100nm).由于体系中Bi3+离子的引入,相对于Gd0.9Yb0.1VO4,Gd0.87Yb0.1Bi0.03VO4在989nm处的近红外发光强度提高近120%,且其激发峰也从323nm红移至341nm,整个激发谱带更宽,更有利于实际应用.由于Yb3+离子既可以利用基质中的VO3-4电荷迁移态跃迁的能量,也可以同时利用Bi3+的1S0-3P1能级跃迁传递能量,相对于目前报道的理论量子裁剪效率最高的YVO4:Bi3+,Yb3+,GdVO4:Bi3+,Yb3+无论其近红外发光强度还是可见光发光强度强度皆有提升,是一种很有希望的紫外宽带激发近红外发光材料.  相似文献   

6.
合成了Tm3+掺杂的3CdO·Al2O3·3SiO2玻璃,对其吸收光谱、激发和发射光谱进行了测试与分析,并根据Judd-Ofelt理论计算了该玻璃中Tm3+离子的辐射跃迁几率、荧光分支比和积分发射截面等光谱参数.  相似文献   

7.
通过高温固相法合成了Ho~(3+)-Yb~(3+)共掺杂La_2O_3上转换荧光粉.在980、1 064以及800 nm 3种不同波长的激光激发下,样品产生了明显的上转换荧光.利用980 nm的激光作为激发源,在Ho~(3+)掺杂量为0.5%的条件下,研究了Yb~(3+)掺杂量的变化对样品上转换荧光强度的影响.研究结果表明:Yb~(3+)掺杂浓度为10%样品产生的上转换荧光最强,相比未掺Yb~(3+)的样品,绿光强度提高了65倍,对样品的上转换发光机理进行了详细的研究.  相似文献   

8.
利用高温固相法制备了Yb~(2+)掺杂Ba Mg Si O4:Eu~(2+)荧光粉,通过XRD和光致发光光谱分别对其物相和发光性能进行表征.结果表明:Ba Mg Si O4:Eu~(2+),Yb~(2+)为单一基质的荧光粉,激发光谱主要由220~400 nm和400~451 nm两个宽峰组成;在373 nm激发下,样品Ba Mg Si O4:Eu~(2+),Yb~(2+)表现出两个宽带发射,分别位于440 nm和500 nm处,属于Eu~(2+)的特征跃迁4f65d→4f7;Yb~(2+)掺杂使样品的主发射峰由440 nm转变为500 nm,发光强度随着Yb~(2+)掺杂量的增加先增强后减弱,而440 nm发射强度逐渐下降;Yb~(2+)取代Ba~(2+)的最佳量为0.02 mol,其色坐标为(0.1433,0.3344).所得样品可应用于UV-白光LED领域中.  相似文献   

9.
Ce~(3+)和Tb~(3+)掺杂的BaO-La_2O_3-B_2O_3-SiO_2玻璃的发光性质   总被引:2,自引:1,他引:2  
采用传统熔体冷却技术制备Ce~(3+)和Tb~(3+)掺杂的BaO-La_2O~3-B_2O_3-SiO_2玻璃,并测试样品的吸收光谱和荧光光谱.实验结果表明:由于Ce~(3+)在5d-4f轨道之间的电子跃迁,基础玻璃掺Ce~(3+)后吸收截止边明显红移;掺Ce~(3+)的BaO-La_2O_3-B_2O_3-SiO_2玻璃的荧光发射光谱为峰值位于410 nm附近的宽带,对应于Ce~(3+)的5d-4f跃迁;由于SiO~2比B_2O_3的光碱度大,玻璃的荧光发射波长,体现出随硼硅比的降低而略有红移;还原性气氛有利十提高玻璃中Ce~(3+)的含量,从而增强发光强度;对Ce~(3+)和Tb~(3+)共掺玻璃,Ce~(3+)和Tb~(3+)在波长200-311 nm间有激发带重叠,因存在竞争吸收,导致以此区间波长激发时Tb~(3+)的发光有所减弱;Ce~(3+)和Tb~(3+)在311-444 nm间也有激发带(或激发带与发射带)部分重叠,因Ce~(3+)和Tb~(3+)之间存在的辐射和无辐射能量传递导致Ce~(3+)强烈敏化Tb~(3+)的发光.  相似文献   

10.
利用燃烧法在600℃合成了SrAl2O4:Eu2+、Dy3+、Ho3+长余辉发光材料.所得产物分别进行了XRD、TEM、FL测试和激发一定时间后的亮度测试,分析结果表明:所得燃烧产物都单一的SrAl2O4相,TEM测试表明磷光体的平均粒径在50nm左右,发射光谱表明最大发射峰位于513 nm,产物的亮度测试表明,SrAl2O4:Eu2+、Dy3+中掺入一定量的Ho3+,会使其余辉性能增强.  相似文献   

11.
采用溶胶-凝胶法制备了Gd2O3∶Eu3+,Gd2O3∶Yb3+与Gd2O3∶Eu3+,Yb3+荧光粉,对制备条件进行了研究,且进行了样品的物相表征.结果表明,Yb3+在高掺杂浓度下存在浓度猝灭,Eu3+可以通过共合作能量传递过程和交叉弛豫过程有效地将能量传递给临近的一对Yb3+离子.Gd2O3∶Eu3+,Yb3+在Eu3+的特征激发峰314 nm激发时,可以产生550~750 nm的Eu3+的特征发射和900~1100 nm的Yb3+近红外特征发射两个波段光谱.制备的Gd2O3∶Eu3+,Yb3+荧光粉可以将硅太阳能电池吸收较弱的300~550 nm的高能光子转换为两个响应较好的近红外光子.  相似文献   

12.
稀土离子掺杂的上转换发光材料由于其在短波长激光器方面的潜在应用而受到了广泛关注.本文总结了稀土离子常见的几种上转换发光机制,分析了Tm3+离子在不同泵浦方式下的上转换发光及上转换发光效率对激光脉冲持续时间、敏化剂和基质成份的依赖关系,综述了Tm3+离子掺杂的上转换发光材料的研究现状,并对Tm3+离子上转换发光的研究及应用进行了展望.  相似文献   

13.
采用溶胶-凝胶法制备了系列近红外发光材料Y_(1.98-x)Yb_xEu_(0.02)O_3(其中x=0,0.01,0.02,0.04,0.06,0.10),并采用X射线衍射仪(XRD)、荧光光谱(PL)等测试方法、技术对样品的物相结构和发光特性进行了表征及测试.结果表明:Eu~(3+)和Yb~(3+)掺杂的荧光粉中,Eu~(3+)和Yb~(3+)部分取代了Y~(3+),并占据其晶格位置,而对Y_2O_3的立方相晶体结构未产生显著影响;在466 nm波长(Eu~(3+)的特征激发峰)激发下,在可见光区及近红外光区可观察到较强的发射光谱,其中,Y_(1.94)Yb_(0.04)~(3+)Eu_(0.02)~(3+)O_3在近红外光区发光效率最高.采用溶胶-凝胶法制备出Eu~(3+)和Yb~(3+)掺杂的新型荧光材料,可将硅太阳能电池吸收较弱的高能光子转换成吸收较好的近红外光子,可有效解决太阳光谱与硅太阳能电池光电响应之间存在的光谱失配问题.  相似文献   

14.
采用溶胶凝胶法,合成YF_3/Y_2O_3:Yb~(3+),Er~(3+),Tm~(3+)样品.通过TEM,XRD,Raman及荧光分光光度计对样品的形貌、物相及上转换发光进行表征.结果表明,在980nm激光激发下,Y_2O_3:Yb~(3+),Er~(3+),Tm~(3+)样品在Tm~(3+)掺杂浓度较低时,因Y_2O_3基质具有较大的声子能量,能够实现白色上转换发光.Y_2O_3:Yb~(3+),Er~(3+),Tm~(3+)纳米粒子有望在白色激光器、白色荧光粉及生物医学荧光标记等方面发挥更大的作用.  相似文献   

15.
为减少电子浆料配制中含铅玻璃粉.对环境的污染,以V_2O_5-P_2O_5-Bi_2O_3为基体,添加Na_2O、Li_2O、Sb_2O_3、CuO、B_2O_3为辅助原料,采用高温熔融和水淬的工艺制备低熔点钒磷铋系玻璃.通过差热分析法、热膨胀测试法和块体失重法研究5种氧化物添加对钒磷铋系玻璃的特征温度、热膨胀系数和化学稳定性的影响.结果表明,Na_2O、Li_2O和Sb_2O_3的掺杂均可提高其特征温度.玻璃样品的热膨胀系数与Na_2O和Sb_2O_3含量近似成正比.当Li_2O含量为5%,其玻璃的热膨胀系数最小.Na2O和Sb2O3的添加能使玻璃的化学稳定性上升.Li2O破坏了网络结构,导致玻璃样品的化学稳定性下降.  相似文献   

16.
采用溶胶-凝胶法合成了BaAl12O19:Tb和BaAl12O19:Eu荧光粉.研究了添加B3+离子对两种荧光粉晶体结构和发光特性的影响.研究结果表明:添加B3+离子并未改变两种荧光粉的BaAl12O19结构.B3+离子引入后两种荧光粉的发光强度都有所提高,但对于BaAl12O19:Tb发光强度的提高作用更大,而且在其中添加的B3+的有效含量明显大于BaAl12O19:Eu.BaAl12O19:Tb荧光粉中B3+的最佳添加量(摩尔分数)为50%,BaAl12O19:Eu荧光粉中B3+的最佳添加量(摩尔分数)为20%.  相似文献   

17.
采用水热法,以稀土硝酸盐为原材料合成了油酸(OA)包覆的Mn~(2+)掺杂Na YF_4:Yb~(3+)/Er~(3+)(Mn~(2+)dopedNa YF_4:Yb~(3+)/Er~(3+))纳米粒子(UCNPs),然后将氨基修饰的聚乙二醇与聚马来酸酐十八烯反应生成的两亲性聚合物m PEG-PMAO作为亲水性配体,通过两亲配体包覆法制备具有水溶性的Mn~(2+)掺杂Na YF_4:Yb~(3+)/Er~(3+)纳米粒子.随后采用透射电子显微镜(TEM)、动态光散射仪(DLS)、X射线衍射仪(XRD)、荧光分光光度计、傅立叶变换红外光谱仪(FT-IR)及热重分析仪(TGA)对合成的样品进行了表征.结果表明,m PEG-PMAO聚合物包覆的Mn~(2+)掺杂Na YF_4:Yb~(3+)/Er~(3+)纳米粒子具有较好的水分散性,且粒子的平均粒径约为17.25 nm.  相似文献   

18.
通过高温熔融法和热处理成功制备了Yb2+掺杂Si O2-Al2O3-ZnO-K2CO3微晶玻璃.测试了微晶玻璃的X射线衍射谱(XRD)、激发光谱和荧光光谱.研究发现:X射线衍射谱表明了玻璃基质中存在β-Zn2Si O4纳米晶粒,根据XRD结果和Scherrer公式计算得到β-Zn2Si O4晶粒大小约为38 nm.在280 nm紫外光激发下,观察到Yb2+掺杂微晶玻璃的宽带蓝光(400~460 nm)和宽带黄绿光(475~600 nm)发光,其中蓝光对应微晶玻璃基质发光,黄绿光对应Yb2+的4f135d→4f14能级跃迁发光,经色坐标换算得到微晶玻璃的色坐标为(0.290 8,0.338 6)落在白光区域内.研究结果表明,Yb2+掺杂的Si O2-Al2O3-ZnO-K2CO3微晶玻璃是一种白光LED潜在材料.  相似文献   

19.
以稀土硝酸盐为原料,采用水热法合成油酸包覆的发红光Mn~(2+)掺杂NaYF_4:Yb~(3+)/Er~(3+)(Mn~(2+)doped-NaYF_4:Yb~(3+)/Er~(3+))上转换纳米粒子,然后以曲拉通磷酸酯为亲水性配体,通过配体交换法将油酸包覆的油分散性Mn~(2+)doped-NaYF_4:Yb~(3+)/Er~(3+)上转换纳米粒子转变成曲拉通磷酸酯包覆的水分散性纳米粒子.随后采用透射电子显微镜(TEM)、动态光散射仪(DLS)、X射线衍射仪(XRD)、荧光分光光度计、傅立叶变换红外光谱仪(FTIR)及热重分析仪(TGA)对合成样品进行表征.结果表明:曲拉通磷酸酯包覆的Mn~(2+)doped-NaYF_4:Yb~(3+)/Er~(3+)上转换纳米粒子平均粒径为19.54 nm,具有良好的水分散性.  相似文献   

20.
利用热溶剂法制备NaLaF_4:Yb~(3+)/Er~(3+)/Dy~(3+)光磁双功能纳米晶。结合能级跃迁图,阐述Dy~(3+)的6FJ和6HJ系列能级与Er~(3+)之间的能量传递及由此引起的特殊光调制现象。研究结果表明:样品在波长为980nm的红外光子激发下可以发射中心波长为522nm和547nm的绿光;随着激发光功率增大,绿光发射强度也相应增强;调节Dy~(3+)的掺杂摩尔百分比,可以同时调制样品的上转换发光和顺磁特性;随着Dy~(3+)的摩尔百分比从0增加到5%,样品的522nm发光相对于547nm发光峰逐渐增强;若进一步增加Dy~(3+)的摩尔百分比到10%,其相对强度反而减弱。随着Dy~(3+)的摩尔百分比从0增大到10%,样品的顺磁性单调提升,但伴随着总体发光强度衰减。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号