首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
随着人机交互技术的发展,手势动作作为一种自然、方便以及高效的交互方式受到人们的关注。因而对此从理论和程序执行的角度提出一个针对9种手势识别的卷积神经网络(Convolutional Neural Networks,CNN)模型。首先,从组成CNN的基本单元神经元开始,然后上升到神经网络,最终到反向传播算法。通过调整卷积神经网络中的参数(迭代次数、步长),观察不同参数对网络的均方误差和测试准确度的影响。实验结果表明,该模型和算法可以有效识别9种手势,识别准确率最高可达93. 33%.  相似文献   

2.
为了提高手势识别的准确率,提出一种基于深度卷积神经网络和支持向量机的手势识别算法;将包含手势的图像进行手掌轮廓分割及手指关节特征提取,经过去噪后获得准确的手势图像,然后通过卷积与池化获得手势特征样本,采用神经网络算法对输入特征样本进行训练,并对全连接层各节点的输出结果进行支持向量机多元分类,从而获得手势识别结果;在差异化设置条件下,通过对比手势识别的平均准确率和识别时间,可获得最优的卷积核尺寸及池化方法。仿真实验结果表明,相比其他3种识别算法,所提出的算法具有更优的识别准确率。  相似文献   

3.
提出运用双层卷积神经网络模型实现基于足底压力图像的步态识别方法.首先,对足底压力数据采集系统采集的图像作相应预处理;然后,用双层卷积神经网络模型学习得到足底压力图像的单层和双层卷积特征;最后,将卷积特征训练分类器得到分类结果.实验结果验证了该算法的有效性.  相似文献   

4.
相较于传统烟火、烟雾传感器检测方法,基于卷积神经网络算法的烟火检测具有更高的检测精度和效率,并能提供火灾现场全局/局部详细信息。本文提出基于改进YOLOv3算法的烟火识别,应用高斯参数设计损失函数从而建立YOLOv3边界框模型,可预测边界框定位不确定性,减少负样本;为充分利用图像局部特征信息对网络结构进行改进,以实际烟火现场图片为研究对象,完成烟火识别过程计算。利用不同拍摄角度、光照条件自制火焰和烟雾数据集进行测试,结果表明,与传统YOLOv3对比,本文提出的改进YOLOv3算法平均精度提高了4.2%。研究方法将有助于提升智能烟火预警、人员救助和险情跟踪作业水平,最终提升事故灾害的应急能力。  相似文献   

5.
6.
7.
为提高利用表面肌电信号(sEMG:Surface Electromyography)进行手势识别的准确率并解决其受不同提取特征影响的问题,提出了一种基于多路卷积神经网络(MB-CNN:Multi-Branch Convolutional Neural Networks)的手势识别方法.首先,使用MYO手环采集8种不同手...  相似文献   

8.
提出基于卷积神经网络的单标签非接触式手势识别系统,在不需要携带任何设备的情况下,利用单标签、单天线实现精准的手势识别。首先,通过人为添加干扰物,读取受多径效应影响的标签相位信号;其次,对标签相位信号进行预处理,选取动态时间规整算法(dynamic time wrapping, DTW)匹配与先验指纹库粗粒度手势识别;最后,将标签相位信号利用马尔可夫变迁场(markov transition field, MTF)生成特征图像,利用IM-AlexNet模型进行深度训练和实验测评。实验结果表明,改进后的模型训练参数减少为初始的7%,且准确率达到96.76%.该系统可大范围扩展,并具有较高的鲁棒性。  相似文献   

9.
基于神经网络的手势识别技术研究   总被引:1,自引:0,他引:1  
以数据手套为基础,分析了手形的几何关系,建立了虚拟手的模型,由数据手套的数据接口获取各指节的曲伸角度,建立手势标准样本库,并提出了基于BP神经网络的手势识别方法,用手势标准样本加以训练,使其具备识别手势的功能,并利用VC 编程实现BP神经网络,用Matlab验证实验结果的正确性.  相似文献   

10.
为了解决银行、邮局等场合的实时数字识别问题,提出了一种优化的卷积神经网络(Convolutionnal Neural Network,CNN)数字识别方法。以Lenet-5模型为基础改进了卷积神经网络结构并推导了改进后的前向和反向传播算法,将改进的卷积神经网络在手写、印刷数字组合数据库上进行测试,分析了不同样本数量、训练迭代次数等参数对识别准确率的影响,并与传统算法进行比较分析。结果表明改进后的CNN结构简单,处理速度快,识别准确率高,具有良好的鲁棒性和泛化性,识别性能明显高于传统网络结构。  相似文献   

11.
农产品检测技术一直以来都是农业领域研究的热点问题,但以往的识别的错误率都居高不下,该文采用了基于有深度学习机制的卷积神经网络方法来提高识别率.首先对采集到的图像进行预处理得到规范化的二值化图像,再利用Matlab软件进行神经网络的建模,利用其网络自学习能力进行训练与测试,通过仿真验证卷积神经网络对辣椒图像的精确识别率.并与传统BP神经网络进行比较,表明其具有很好的鲁棒性和泛化能力.  相似文献   

12.
研究YOLO算法在手势识别中的应用,提升在近肤色和光线明暗不一的背景下检测的速度和精度.YOLO算法是端到端的检测方法,通过卷积神经网络自动提取目标的特征,可以大幅度提高运算速度.鉴于YOLO算法在目标检测任务中的优良表现,将YOLO算法应用到手势识别问题中.通过对YOLO系列算法的研究对比表明,YOLO算法在手势识别中具有良好表现.同时,在YOLOv3算法的快速版本YOLOv3-tiny的基础上提出了YOLOv3-tiny-T算法.YOLOv3-tiny-T在包含5种手势的UST数据集上,平均精度均值为92.24%,较YOLOv3-tiny获得了5%左右的提升.   相似文献   

13.
干扰识别是雷达抗干扰的前提,但是基于特征参数的识别方法受噪声影响大,且参数的特征提取只是发生在某一脉冲重复周期内,难以识别一些具有时序关系的干扰信号.然而利用特征去识别干扰的思路是可行的,据此,本文提出一种利用两个卷积神经网络级联的干扰类型判别方法,此方法基于信号的伪Wigner-Ville分布,分别利用单周期时频图像完成干扰预分类,多周期合成时频图像完成干扰细分类,实现了8种典型干扰样式的识别,尤其适用于拖引干扰的识别.实验结果表明,在本文生成的数据集上,8种干扰的平均识别正确率达到了98%以上.   相似文献   

14.
传统手势识别方法需要人工选取特征,选取的特征往往很难适应手势的多变性,从而极大地影响了手势的识别率;提出了一种基于肤色特征和卷积神经网络的手势识别方法;首先采用椭圆肤色模型对复杂背景下的手势样本进行分割,将分割出的手势区域进行二值化和归一化处理,然后构建了一种卷积神经网络对处理过的手势样本进行迭代训练,提取出各类手势关键的高维特征,进而得出手势识别模型;通过该方法训练出的手势模型能够自主地对给定的手势图像进行特征提取和手势分类;实验表明:该手势识别方法在测试集上具有较高的识别率;在现实场景的测试中,该方法也取得了良好的手势识别效果,且实时性和鲁棒性较好。  相似文献   

15.
相较于传统烟火、烟雾检测,基于卷积神经网络算法的烟火检测具有更高检测精度和效率,提出基于改进YOLOv3算法的烟火识别方法,应用高斯参数设计损失函数并建立YOLOv3边界框模型,实现边界框置信度计算以减少负样本.为充分利用图像局部特征信息,对网络结构进行改进,以实际烟火现场图片为待检对象,完成烟火识别过程计算.结果表明,与基础YOLOv3对比,本研究提出的改进YOLOv3算法平均精度提高5.5%,该方法有助于提升智能烟火预警、人员救助和险情跟踪作业水平,最终提升事故灾害应急和管理能力.  相似文献   

16.
基于改进概率神经网络的手势动作识别   总被引:1,自引:0,他引:1  
为寻找一种快速且高识别率的手势识别方法,提出一种基于改进的概率神经网络手势识别算法。该算法采用K-W检验方法实现sEMG(Surface Myoelectrogram Gestures)的特征选择,利用粒子群优化方法对传播率参数进行优化。在7种手部姿势识别的实验中,该算法平均正确识别率均在90%以上,而传统BP算法的正确率仅为85.7%。仿真实验结果表明,改进的概率神经网络算法具有更短的训练时间和更强的分类能力。  相似文献   

17.
于微波  周旺  杨宏韬  李昱 《科学技术与工程》2022,22(32):14282-14288
针对传统姿态识别算法识别精度不高,通用性不强,易受环境因素的影响,且需要对检测图像进行复杂的图像预处理操作的问题。基于卷积神经网络的特征提取能力和识别分类能力,提出一种基于卷积神经网络的发动机主轴承盖姿态识别算法,所提算法去除了传统复杂的预处理操作,通过提取轴承盖4个面的特征,对轴承盖4个面进行识别。实验结果表明:所提算法不仅可以正确识别发动机主轴承盖的4个面,而且平均识别精度为100%,平均识别时间为3.80 s,具有识别精度高,识别时间短,抗干扰能力强的特点。  相似文献   

18.
结合机器人的工作原理以及卷积神经网络(CNN)在图像分类中的应用,提出了一种基于卷积神经网络的壁面障碍物检测识别算法.首先,以壁面障碍物准确识别为目标,构建壁面障碍物图像库;然后,通过对VGG-16网络简化后进行优化,得到适合壁面障碍物准确识别的卷积神经网络模型.在此基础上,设计该网络由输入层、4层卷积层、2层池化层、1层全连接层以及输出层组成,进一步利用3×3卷积核对训练样本进行卷积操作,并将所获取的特征图以2×2领域进行池化操作.重复上述操作后,通过学习获取并确定网络模型参数,得到最佳网络模型.实验结果表明,障碍物的识别准确率可达99.0%,具有良好的识别能力.  相似文献   

19.
针对在有冗余图像信息干扰下进行人脸有效特征点提取时精度不高的问题,提出了基于级联卷积神经网络的人脸特征点检测算法.在该算法中:输入层读入规则化的原始图像,神经元提取图像的局部特征;池化层进行局部平均和降采样操作,对卷积结果降低维度;卷积层和池化层分布连接,迭代训练,输出特征点检测结果.该算法采用Python语言编程实现,在人脸数据集进行仿真实验,结果表明该算法对人脸特征点有较高的识别率.  相似文献   

20.
以交通标志识别为研究目的,提出一种基于集成卷积神经网络的交通标志识别算法,通过对多个不同结构的卷积神经网络进行集成以提高算法识别率。为了缩短网络训练和测试时间以及提高网络识别率,对单个卷积神经网络的结构进行了优化。使用ReLU(rectified linear unit)激活函数来代替传统的激活函数,使用批量归一化(batch normalization,BN) 方法对卷积层输出数据进行归一化处理,将卷积神经网络的分类器用支持向量机(support vector machine,SVM)代替。使用德国交通标志识别数据库(german traffic sign recognition benchmark,GTSRB)进行训练和测试,实验结果表明,提出的算法识别率为98.29%,单幅交通标志图像测试时间为1.32 ms,对交通标志具有良好的识别性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号