首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对纳米零价铁易团聚和表面形成钝化层的问题,在零价铁与凹凸棒土质量比为2∶1、硫与零价铁的摩尔比为0.25∶1的条件下,制备了凹凸棒土负载硫化纳米铁复合材料。用该复合材料以0.2 g·L~(-1)投加量去除30 mg·L~(-1)的Cu(Ⅱ)溶液,1 h内Cu(Ⅱ)的去除率即可达到86.2%。通过SEM和TEM观察到,经负载硫化改性后的零价铁较均匀地分布在凹凸棒土上。比表面积测定结果表明,与纳米零价铁相比,复合材料的比表面积提高了2.3倍。影响因素实验结果表明,在pH=2~11的范围内,复合材料对铜的去除率稳定在85.2%以上;有氧气存在时复合材料去除Cu(Ⅱ)会发生脱附,且Cu(Ⅱ)溶液浓度越高,脱附现象越明显,溶解氧浓度越低,越有利于复合材料对Cu(Ⅱ)的去除。复合材料对Cu(Ⅱ)的最大吸附量可达9.25 mmol·g~(-1)(587.8 mg·g~(-1))。  相似文献   

2.
以凹凸棒土为粘接剂制备颗粒13X分子筛/凹凸棒土吸附剂,考察不同煅烧温度下所制复合材料的孔结构、表面形貌、热稳定性及其对Pb~(2+)去除率,并以所制吸附剂为填料进行柱实验,研究其去除Pb~(2+)的机理及废水中Pb~(2+)浓度和水力负荷对吸附效果的影响。结果表明,适当提高煅烧温度,可增大复合材料的比表面积和孔体积,有利于废水中Pb~(2+)的吸附,但当煅烧温度高于700℃时,材料的晶体结构被破坏,比表面积由492.50 m~2·g~(-1)急剧下降至2.80 m~2·g~(-1);13X分子筛/凹凸棒土吸附剂可通过中和沉淀、过滤截留和离子交换吸附等方式有效去除废水中的Pb~(2+),填充柱的穿透时间随水力负荷和Pb~(2+)浓度的增大而缩短,当水力负荷为7.4 m~3·m~(-2)·h~(-1)时,13X分子筛/凹凸棒土颗粒的饱和吸附量最大,为542 mg·g~(-1)。  相似文献   

3.
针对制革废水中的三价铬污染问题,以没食子酸(GA)作为负载物,采用一步法合成了Fe_3O_4@GA纳米粒子,并考察了该纳米粒子对三价铬的吸附特性。通过傅里叶红外光谱(FT-IR)、比表面积分析仪(BET)、X-射线衍射仪(XRD)、热重分析仪(TGA)、振动样品磁强计(VSM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对纳米材料的微观特性进行了表征。结果表明,GA能够有效负载到Fe_3O_4纳米粒子上,负载量为4.9%(质量分数),修饰过程不会改变Fe_3O_4纳米粒子的晶相结构。负载后的Fe_3O_4@GA的比表面积为83.52 m~2·g~(-1),粒径为10~15 nm,饱和磁强度为51.12 emu·g-1,有很好的分离特性。吸附实验表明,Cr~(3+)的去除率随pH值和吸附剂投加量的增大而增高。吸附动力学符合拟二级模型,最大吸附容量为12.19 mg·g~(-1),吸附等温模型符合Freundlich模型。Fe_3O_4@GA可以有效去除制革废水中的Cr~(3+)。  相似文献   

4.
采用浸渍-高温煅烧法制备了不同过渡金属负载颗粒活性炭的催化剂(M/GAC)。将催化剂用于过硫酸钠(PDS)/酸性橙7(AO7)体系,控制反应条件为[AO7]=10 mg·L-1、[PDS]=2mmol·L-1、[M/GAC]=2 g、p H=7。结果表明,负载镍的活性炭(Ni/GAC)具有较明显的催化效果。探究Ni/GAC的制备条件发现,催化效果随Ni(NO3)2浸渍液浓度和煅烧温度的提高皆先升高后降低,最佳浓度为0.075 mol·L-1,最佳煅烧温度为650℃。Ni/GAC的X-射线衍射(XRD)结果证明,煅烧温度为450、650和850℃时活性炭表面主要的负载物分别是Ni2O3、Ni O、Ni O与Ni的混合物,Ni O是催化反应的主要活性物相,Ni对催化反应有抑制作用;比表面积(BET)测试表明,Ni/GAC的比表面积比GAC降低了4.42%,比表面积的变化对其吸附作用和催化活性的影响较小;扫描电镜(SEM)结果显示,Ni/GAC表面均匀沉积一层细小的颗粒,Ni/GAC重复使用3次后,其孔结构和表面形态发生变化且负载物部分损失,但仍具有较好的催化活性和稳定性。  相似文献   

5.
为了迅速高效地去除水中的重金属Cd~(2+),以粉末状4A分子筛和凹凸棒土为原料,经过混匀、烘干、破碎、筛分、煅烧成型的造粒工艺,制得4A分子筛/凹凸棒土(简写为4A/凹土)颗粒型材料。用此材料作为吸附剂处理水中的重金属Cd~(2+),考察了4A分子筛质量比和煅烧温度对其结构和性能的影响,并利用SEM和XRD等手段对其微观结构和性能进行了表征。研究结果表明,制备4A/凹土颗粒材料的适宜条件为m(4A)∶m(凹土)=7∶3;煅烧温度600℃。在微观形貌和晶相结构上,4A/凹土颗粒均表现为4A分子筛和凹凸棒土材料的复合,600℃煅烧温度下比表面积为63.778 1m~2·g~(-1),通过离子交换吸附Cd~(2+)的容量为71.03 mmol·(100g)~(-1)。  相似文献   

6.
将铁负载于纳米纤维素上制得铁改性纳米纤维素(Fe(OH)_3@CNFs),并将其作为吸附剂用于去除废水中的磷。探讨了吸附磷饱和的Fe(OH)_3@CNFs的再生性能,比较了不同类型的再生液、再生液浓度和脱附次数对Fe(OH)_3@CNFs再生的影响,对再生前和再生五次后的Fe(OH)_3@CNFs进行扫描电子显微镜(SEM)和傅立叶红外光谱(FT-IR)分析。结果表明,0.5 mol·L~(-1)的NaOH溶液对材料的再生效果最好。材料经吸附-脱附再生循环后,再生第五次的Fe(OH)_3@CNFs的丝状结构表面发生了轻微的刻蚀,表面负载的铁元素含量从23.38%下降到22.98%。同时,材料再生前后的傅立叶红外光谱图中的吸收峰接近,说明功能性官能团无明显变化。再生后的Fe(OH)_3@CNFs对磷的吸附容量从24.58 mg·L~(-1)下降到16.60 mg·L~(-1),说明再生后的材料仍能保持较好的吸附能力,且可以实现材料的多次重复利用。  相似文献   

7.
以膨润土为载体,负载1%质量分数的壳聚糖后,制得一种复合吸附剂,用于四种活性染料活性大红B-3G、活性深兰B-2GLN、活性黑B-GRFN、活性墨绿B-4BLN的吸附平衡研究,在100mg·L-1浓度范围内,每种染料的饱和吸附容量分别是11.850mg·g-1、7.760mg·g-1、7.276mg·g-1、8.362mg·g-1,对四种染料的等温吸附平衡数据分别用Langmuir、Freundlich等温方程式进行分析,更符合Langmuir模型。通过X-射线衍射实验结果表明,膨润土的片状层结构未发生变化。吸附的可能机理为单分子层化学吸附作用。  相似文献   

8.
氯甲基化聚苯乙烯与谷氨酸(Glu)胺解反应合成聚苯乙烯-谷氨酸螯合树脂(下称Glu树脂),通过红外光谱表征树脂结构,测定其树脂的比表面积和孔结构等数据,并研究该树脂对Pb~(2+)和Hg~(2+)的静态和动态吸附性能,结果表明Glu树脂对Pb~(2+)和Hg~(2+)的吸附为55.15 mg·g-1和57.73 mg·g-1.  相似文献   

9.
利用静电吸附作用将带正电的Fe3O4颗粒与带负电的石墨烯(GN)相结合制备出稳定的Fe3O4-GN复合材料.XRD结果显示Fe3O4-GN复合材料是由立方晶型的Fe3O4和无序排列的GN组成,FT-IR结果表明氧化石墨烯被水合肼还原,SEM照片显示Fe3O4颗粒均匀地负载在GN片层表面,粒径约为160nm.当制备的Fe3O4-GN复合材料作为电极材料使用时,在5C倍率下放电、充电时,其电比容量能保持在700mAh·g-1左右;在1C倍率下循环50次后,其放电、充电比容量分别为749、741mAh·g-1,Fe3O4-GN电极显示出良好的倍率性能和循环性能.  相似文献   

10.
针对零价铁易团聚、氧化和钝化的缺陷,选用海泡石为载体、过渡金属镍为催化剂,制备了一种克服以上缺陷的海泡石负载铁镍复合材料(用Fe/Ni-SEP表示),研究了该材料还原水中对氯硝基苯的还原途径、机制及pH与温度的影响。研究结果表明,在30℃下用2 g·L~(-1)投加量的Fe/Ni-SEP去除初始浓度为10 mg·L~(-1)的对氯硝基苯溶液,120 min时有94.3%的对氯硝基苯被还原成苯胺。去除过程符合L-H模型,说明去除为还原与吸附的协同作用,其中k_1?k_2,因此吸附为速率决定步骤。还原途径与去除机制为:Fe/Ni-SEP中零价铁作为电子供体将硝基还原为胺基,金属镍将零价铁的腐蚀产物H_2转化为活性氢,活性氢作用于苯环上的C-Cl键,使对氯苯胺加氢脱氯变成苯胺。升高温度加快了传质速率,且利于反应物越过能垒,使反应速率加快。pH为3~7时,利于发生还原脱氯反应。  相似文献   

11.
改性凹凸棒土吸附微污染水中苯酚的实验研究   总被引:4,自引:0,他引:4  
王瑛  谢刚 《甘肃科学学报》2006,18(1):111-113
实验研究了用聚二甲基二烯丙基氯化铵(PDMDAAC)改性凹凸棒土吸附微污染水中苯酚的性能及主要影响因素.结果表明:PDMDAAC改性凹凸棒土对微污染水中苯酚具有较强的吸附能力,在pH=6~8、苯酚浓度为10 mg/L、投加量为40 g/L、吸附时间40 min的条件下,吸附去除率达89%;改性后的凹凸棒土可用碱进行再生,再生后对苯酚的吸附能力没有明显下降,改性凹凸棒土的静态吸附行为符合Freundlich吸附等温方程.  相似文献   

12.
分别利用水热法和微波法制备了具有特殊晶体形貌和介孔结构的金属有机框架材料MIL-100(Fe),并采用微波法制备MIL-100(Fe)对水体中甲基橙染料进行吸附性能研究.结果表明,与水热法相比,微波法制备的MIL-100(Fe)呈均匀的细棒状结构,孔径均匀集中(3.8 nm),具有更高的比表面积和结晶度.吸附实验结果表明,在pH值为2.5时,染料的最大吸附量为147.08mg/g,主要为化学吸附.吸附过程符合Langmuir恒温吸附模型及准二级动力学模型.  相似文献   

13.
用硝基苯作溶剂一锅法成功合成了高交联聚苯乙烯大网均孔树脂,树脂的外观较好,具有较高的比表面积(约250m2·g-1),对5g·L-1苯酚溶液中苯酚静态吸附可达180mg·g-1,动态吸附量达298mg·g-1.  相似文献   

14.
以聚乙烯吡咯烷酮(PVP)和聚甲基丙烯酸甲酯(PMMA)为原料,通过静电纺丝法结合三步热处理工艺成功制备出多孔碳纳米纤维.采用X射线衍射、扫描电镜、透射电镜和比表面分析仪等测试方法系统地分析了PVP/PMMA不同质量比对多孔碳纳米纤维的形貌和电化学性能的影响.实验测试结果表明当PVP与PMMA质量比为3∶2时,得到的多孔碳纳米纤维的比表面积最大,可达到545.4m2·g-1,并且具有最好的电化学性能;在0.1C充放电速率下50次循环之后样品的放电比容量约为220mAh·g-1.所有由PVP/PMMA混合原料制备的多孔碳纳米纤维的比容量均高于由PVP原料制备的碳纳米纤维,并具有较好的循环性能.  相似文献   

15.
采用电化学共沉积技术在泡沫镍基体上直接制备掺杂Zn的Ni(OH)2电极,研究了乙醇-水体系下不同镍锌比电沉积溶液制备的电极材料的电容特性。通过XRD、SEM、EDS等测试方法对制备的电极材料进行微结构表征,并用恒流充放电、循环伏安法系统地考察其电化学性能。结果表明:所制备的电极材料为掺杂Zn的α-Ni(OH)2。当镍锌比为1∶0.0075时,循环伏安测试(扫描速率是1mV.s-1)α-Ni(OH)2电极的比电容达1906.09F.g-1。经100次恒流充放电循环后比电容衰减仅0.09%,说明电极材料具有良好的稳定性。在7.5mA.cm-2电流密度下,比电容达313.88F.g-1。  相似文献   

16.
以研发的13X分子筛复合材料填充固定床富集水中的Ni(Ⅱ),考察了进水Ni(Ⅱ)浓度、流速和pH对固定床富集Ni(Ⅱ)性能的影响,探讨了复合材料富集Ni(Ⅱ)的机理.结果表明,在进水流速为150 mL·min-1、Ni(Ⅱ)浓度为100 mg·L-1、pH为(6.4±0.1)的条件下,固定床运行7.19 h后达到穿透点...  相似文献   

17.
分别采用冷冻法、球磨法、水热法、球磨-冷冻法和球磨-水热法对凹凸棒石进行解聚,以解聚后的凹凸棒石为载体,负载纳米Fe/Ni降解水中的2,4-二氯酚,探究凹凸棒石的解聚对凹凸棒石负载纳米Fe/Ni降解水中2,4-二氯酚的增强作用.结果表明,单独采用球磨法或冷冻法对凹凸棒石解聚不明显.球磨-冷冻法解聚的凹凸棒石,其BET比...  相似文献   

18.
金属骨架有机多孔碳的制备及其在锂空气电池中的应用   总被引:1,自引:1,他引:0  
以苯二甲酸-锌配位化合物(MOF-5)为原料合成金属骨架有机多孔碳MOF-PC,并首次应用于锂空气电池.采用XRD、SEM、TEM、氮气脱吸附和恒流充放电测试研究了MOF-PC的物理及电化学性能.结果表明,样品MOF-PC为无定型碳,比表面积为654m2·g-1.以MOF-PC为空气电极的锂空气电池在0.1mA·cm-2电流密度下放电比容量高达3 183mAh·g-1,比传统碳材料(Super P)在相同电流密度下的容量高90%.  相似文献   

19.
以KIT-6为硬模板,合成了介孔SnO2-6材料.这种介孔材料不但具有较高的比表面积(57 m2· g-1),而且具有较小的颗粒尺寸(4~7 nm),展现出良好的气敏性能.并用TEM、XRD、氮气吸附-脱附等测试手段对材料结构进行了详细的表征.  相似文献   

20.
以粉末13X分子筛为原料、凸凹棒土为粘合剂制备了颗粒13X分子筛复合材料,采用扫描电子显微镜、X-射线衍射仪、比表面积分析仪等对其形貌和结构进行表征,研究了颗粒13X分子筛固定床对Zn~(2+)的去除及其机理。结果表明,颗粒13X分子筛具有微孔-介孔-大孔的多级孔结构,BET比表面积达442. 95 m~2·g~(-1),仍保留了粉末13X分子筛的晶相结构;颗粒13X分子筛固定床除Zn~(2+)的机理主要为离子交换吸附和化学沉淀作用,并且穿透点出水pH在7左右,吸附饱和后材料中锌的含量为9. 75%;颗粒13X分子筛固定床中去除Zn~(2+)的过程符合Thomas模型,不同流速下对Zn~(2+)的平衡吸附量为1. 36~1. 81 mmol·g~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号