首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
水平加强层对钢框架结构抗连续倒塌性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究水平加强层对钢框架结构抗连续倒塌性能的影响,利用ANSYS有限元软件,以一幢10层钢框架结构为原型,根据支撑的设置方式建立了4种有限元模型,采用备用荷载路径法,将不同底层柱突然失效分为8种工况,对每种工况下的4种模型进行了动力非线性分析。分析结果表明:底层柱失效后,水平加强层可以有效提高结构的整体拉接力,从而显著减小破坏部位的竖向位移,并将荷载传递至失效柱的临近柱,避免结构构件发生屈服造成结构刚度的下降。在底层柱上方增设水平加强层可以以较低的造价增强结构的整体性,增强钢框架结构发生局部破坏后的内力重分布能力,提高抗连续倒塌能力。  相似文献   

2.
基于向量式有限元建立半刚接钢框架结构模型,考虑初始变形,采用将构件拆除前后的静力分析和动力分析全过程统一的瞬时卸载法.通过对一平面半刚接钢框架结构进行动力非线性分析,研究底层不同柱失效后剩余结构抗竖向连续倒塌动力响应,对比不同节点转动刚度对钢框架结构抗倒塌性能的影响.结果表明,节点转动刚度对钢框架结构抗竖向连续倒塌影响较大,因此在研究钢框架结构抗竖向连续倒塌时有必要考虑梁柱真实连接刚度.  相似文献   

3.
高层建筑结构构件尺寸较大,爆炸荷载作用下应力波传播造成的材料破坏效应不能忽略,需要采用精细化模型来分析其非线性响应行为与连续倒塌过程,计算效率低,实用性差.本文将多尺度建模方法引入到爆炸荷载作用下高层建筑结构的连续倒塌分析中,依据爆炸荷载作用下高层建筑结构非线性破坏与连续倒塌的特点,提出了多尺度模型不同区域的确定方法,使用该方法对某高层建筑结构的连续倒塌机制和倒塌模式进行了研究.结果表明,相同TNT当量炸药的爆炸荷载作用下,比例距离较小时,高层钢筋混凝土结构可能发生单柱失效-双向联合倒塌模式;比例距离增大至某一区间时,结构则可能发生多柱失效-竖向倒塌模式.多柱失效-竖向倒塌模式影响范围广,对结构危害大,应通过采取防护措施避免该倒塌模式的发生.  相似文献   

4.
钢筋混凝土框架结构地震倒塌造成了大量人员伤亡和经济损失。采用基于MSC.Marc有限元软件开发的THUFIBER程序,以汶川地震中整体倒塌的北川县联社为研究对象,进行框架结构地震倒塌研究。通过动力时程分析得到结构在地震作用下的破坏表现为层失效模式,具体失效层为结构底部一、二层和上部通层。利用ATC-63推荐的22条地震记录对结构进行增量动力分析(incremental dynamic analysis, IDA),得到结构的抗倒塌储备系数约为4.4,结构发生完全倒塌时的平均最大层间位移角约为1/22。  相似文献   

5.
目的研究钢筋混凝土框架结构在地震作用下的连续性倒塌破坏机理,完善结构抗连续性倒塌的设计方法.方法采用建立的钢筋混凝土构件本构模型,对构件整体式建模,最终建立了8层空间框架结构模型.选取合适的构件破坏准则,对钢筋混凝土框架结构进行了地震作用下的连续性倒塌破坏全过程分析,分析了结构位移、弯矩等受力特性,探讨了构件破坏后的传力路径和结构连续倒塌破坏机理.结果框架结构中构件的破坏,一般始于框架梁的竖向大变形,完全倒塌的主要原因是总应变能的累积;结构首层是发生破坏的集中区域,当破坏范围自首层传至2层中跨后,结构将在短时间内完全倒塌;随着构件计算模型中捏缩效应系数的增大,框架结构整体破坏时间呈现先增大后减小的趋势;考虑计算模型中的峰值后强度退化段后,结构完全破坏的时间将会提前.结论"强柱弱梁"的受力机制有利于结构抵御连续倒塌;框架结构的首层是倒塌破坏的薄弱层;合理控制结构构件的剪跨比,可以提高结构整体的延性;若不考虑计算模型中的峰值后强度退化段,将会高估结构的抗连续倒塌能力.  相似文献   

6.
为研究钢框架结构在火灾作用下的抗连续倒塌动力响应。通过ABAQUS有限元软件分别对二层四跨平面钢框架瞬间去柱动力试验以及平面钢框架火灾试验进行数值模拟。将数值模拟获取的竖向位移-时程曲线和破坏模态与试验结果对比,验证了有限元模型的准确性,获取的位移-温度曲线也验证了顺序热力耦合方法的适用性。在验证有限元模型有效性的基础上,进一步研究瞬间去柱的钢框架结构在不同受火温度下的抗连续倒塌动力响应。研究表明:不同节点的连接形式对钢框架进行瞬间去柱时,钢框架的破坏模态与结构的稳定性影响显著,当火灾高温下钢框架采用加强型节点时,框架柱更容易发生过度屈曲,从而更容易引发连续倒塌;温度越高,钢框架去柱后中柱节点的峰值位移值和稳定后的竖向位移值均有明显提升,结构动力响应越明显,结构抗连续性倒塌能力也越小。  相似文献   

7.
建筑结构在意外事件情况下的连续倒塌问题,已成为国内外土木工程学科的研究热点。钢与混凝土组合楼板作为目前钢结构常用的楼板形式,对结构的抗连续倒塌能力影响较大。采用拆除构件法对不带楼板、带钢筋混凝土楼板和带组合楼板的9层空间钢框架进行了连续倒塌仿真计算,分析比较了不同框架的自振周期、破坏模式、相邻构件内力变化与失效机制等,研究了组合楼板对结构抗连续倒塌能力的影响。研究表明,考虑组合楼板后空间钢框架结构的抗连续倒塌能力得到显著提高,且提高程度大于钢筋混凝土楼板。  相似文献   

8.
为了对高层框架结构在强震作用下的倒塌破坏过程进行仿真模拟和分析,运用ANSYS/LS-DYNA有限元软件对一10层框架结构进行强震作用下的分析,从弹性工作阶段到构件开裂直至倒塌破坏的全过程进行了三维非线性仿真分析,仿真结果与真实倒塌过程吻合较好。通过合理选取计算参数和计算模型,可以成功地再现高层钢筋混凝土框架结构倒塌破坏的全过程,从而发现其在强震下的薄弱环节,为揭示高层框架结构倒塌破坏机理以及提高结构的抗震性能提供理论分析依据。  相似文献   

9.
二层钢框架—组合楼板体系抗倒塌试验研究   总被引:1,自引:0,他引:1  
框架梁设计时按组合梁考虑混凝土楼板刚度,设计2层钢框架—组合楼板结构体系,采用卷扬机对拟失效柱突然施加水平力将其从体系中"去除",进行抗倒塌试验研究剩余结构抗倒塌性能.试验结果表明:由于组合楼板的加强作用,试验框架具有较高的冗余度,组合楼板和框架梁共同作用,提供了较高的抗弯刚度,使得框架柱失效后形成新的荷载路径,各构件未发生继发性破坏.由此可见,采用组合楼板时,按现行规范进行设计的框架结构具有较高的冗余度,混凝土楼板在框架结构抗倒塌性能分析中的作用需要进一步评估.  相似文献   

10.
易损性是结构本身的一个特性,是结构在不同地震强度指标作用下,达到特定失效状态或性能水平的可能性。建立钢框架-混凝土剪力墙结构的非线性分析模型,采用增量动力分析方法对结构进行地震易损性研究,提出地震需求参数与地震动强度指标之间的关系,绘制易损性曲线;并结合地震倒塌储备系数对结构的抗震能力进行定量分析。结果表明:结构在立即使用状态时,易损性曲线斜率较大,曲线较陡,说明结构在震后不需经过修理仍可使用,随着谱加速度的增大,结构的超越概率急剧上升。结构在防止倒塌和整体失稳状态时,曲线走势趋于平缓,说明结构进入弹塑性状态后,耗能能力显著增强,结构的抗震倒塌能力可以满足规范要求。倒塌储备系数与结构的倒塌能力呈正相关变化趋势。研究结果为结构的抗震及倒塌能力评估提供参考。  相似文献   

11.
为考察钢框架结构中一根框架柱失效后,剩余结构在倒塌过程中的受力和变形情况,采用MTS和千斤顶配合的方法对二层空间钢框架结构进行了拟静力试验。试验结果显示,在倒塌过程中,框架梁的受力方式从受弯为主向受拉为主转变,当竖向位移达到200 mm时,失效区域部分框架梁全截面受拉;当竖向位移接近250 mm时,梁柱连接节点处焊缝发生断裂。目前应用比较广泛的H型钢全焊接刚性连接节点延性不够好,在梁形成明显的悬链线效应之前即发生破坏。采用显式动力法以准静态的加载方式对试验过程进行了模拟,建议在对含有H型钢全焊接刚性连接节点的钢框架结构进行连续倒塌分析时,采用较精确的节点模型以真实反应节点的受力。  相似文献   

12.
目前我国存在大量已建非延性钢筋混凝土(RC)框架结构,文章针对这类RC结构在遭受外力作用时的破坏模式进行研究分析。采用拟静力分析方法研究以五层RC框架结构为代表的多层RC结构的失效倒塌模式。研究结果表明基于已有的试验数据采用Open Sees有限元建模验证了针对RC框架结构数值模拟的正确性;表明了RC结构首先在结构底层柱下端塑性铰区出现损伤破坏,且同一楼层边柱塑性铰区较中柱损伤严重,逐渐向顶层塑性铰区发展最终使整体框架结构整体发生破坏直至失效倒塌。  相似文献   

13.
基于柔度法理论,运用OpenSees软件对钢框架结构的连续倒塌进行了全过程模拟分析,并采用柔度法单元对梁柱构件进行四段式划分,以实现对构件断裂的模拟.采用抽柱法,给出了结构连续倒塌的动力计算流程.以2个6层平面钢框架为数值算例,分析了结构失效点位移时程、构件塑性铰与断裂顺序,发现失效柱两侧的梁端部首先出现塑性铰,梁端断裂是框架发生整体倒塌的主要原因.最后通过与ABAQUS壳元分析结果及钢框架倒塌试验结果对比,验证了该方法的可行性与正确性,可在实际工程中应用.  相似文献   

14.
为了研究楼板对结构的连续倒塌的影响,本文建立了一个五层框架结构模型,采用SAP2000(V14)对考虑楼板和不考虑楼板两种情况进行抗连续倒塌分析。文章分析了楼板对失效柱顶节点位移、节点加速度以及梁塑性铰的影响。结果表明:楼板对于框架结构抗连续倒塌有较大的贡献,失效柱上节点动力响应随失效柱位置的变化而变化。其中,长边中柱失效、角柱失效属于连续倒塌中较薄弱环节,尤其是角部柱顶层出现柱失效时。总体上,未考虑楼板模型的分析结果较为保守。因此,在今后重要建筑结构抗连续倒塌设计中,应考虑楼板对于结构的贡献,这样可以更加接近真实情况,并有助于提高结构经济性。除此之外,还应加强如长边中柱、角柱部位的构件强度。  相似文献   

15.
利用ANSYS/LS-DYNA有限元程序研究爆炸荷载作用下钢框架结构的连续性倒塌机理,主要针对三层两跨钢框架结构进行分析,总结多层钢框架结构在不同工况条件下的倒塌规律.利用相关规范提出的拉结构件法对结构进行加强设计,验证了多层钢框架结构在多柱破坏情况下拉结构件法的有效性.多柱破坏时,可以通过合理拉结设计有效避免结构发生连续性倒塌,为实际工程中如何利用拉结构件法进行加强设计提供了理论参考.  相似文献   

16.
为了研究高温荷载作用下结构抗连续倒塌性能,基于鲁棒性分析方法提出一个评价指标。通过ANSYS数值仿真,计算了8个数值模型,提取相应数据,得到构件敏感性系数和重要性系数,综合考虑受损杆件自身形变程度,得出杆件的鲁棒性系数。对两种不同工况进行分析,分析结果表明:对钢框架结构施加同等温度荷载时,鲁棒性系数越低,结构越容易破坏,应对鲁棒性较低的杆件加强保护;随着温度的升高,结构中各构件鲁棒性系数均降低,整体结构越容易失稳,安全性越差。所以对高温下结构,应增强构件鲁棒性以防止结构发生连续倒塌。  相似文献   

17.
为了探究爆炸作用下高层钢筋混凝土框架结构的连续倒塌机理,采用ANSYS/LS-DYNA软件,对外部爆炸荷载作用下结构的连续倒塌进行了模拟。建立了结构的多尺度模型并验证其有效性;分别分析了炸药位于角柱和边中柱正前方时框架结构的破坏及倒塌情况;对比了两种工况下建筑物的倒塌过程和倒塌程度。结果表明:多尺度建模方法可以有效模拟框架结构在爆炸作用下的动力响应过程;爆炸荷载作用下目标柱损伤严重,失去承载力,结构内力重分配使相邻结构损伤,最后发生连续倒塌;炸药位于不同位置时,结构的倒塌范围有显著的不同。  相似文献   

18.
对钢框架中栓焊连接节点的两跨三柱型梁柱子结构进行单调静力加载试验,分析了在连续倒塌条件下试件的破坏模式和抗连续倒塌机理.试验结果表明:试件破坏表现出多次、间断性破坏特征,先是失效柱梁柱节点处梁端受拉翼缘发生断裂,进而梁端受拉翼缘与边柱连接附近处发生断裂;试件因两跨梁协同工作在后期阶段可提供高于前期受弯阶段的承载力,表现出较为富余的后期强度储备.同时对影响钢框架梁柱子结构抗连续倒塌性能的边界条件(边柱刚度和周边构件约束)进行数值分析,若边柱足够梁端约束,则周边构件对结构抗倒塌承载力的提高影响较小.  相似文献   

19.
依据传统钢梁柱节点提出了新型摩擦软钢双重耗能节点阻尼器,该阻尼器能够将中屈服点软钢屈服耗能和钢板摩擦耗能相结合进而提高节点的抗震及抗倒塌性能.为提高计算效率采用多尺度建模方法进行有限元建模,节点核心区采用精细化建模方式,非节点核心区梁柱部分采用非线性梁单元,针对梁柱钢节点及其平面框架结构进行抗震性能分析.结果表明:在梁柱节点增设节点阻尼器可有效提高梁柱节点的承载力和耗能能力,并吸收外部输入能量,降低结构构件的破坏水平.同时,基于抽柱法将该新型节点应用于平面钢框架结构的静力Pushdown分析和非线性动力时程分析,分析结果表明:在增设该阻尼器后,可以有效降低构件失效点位移,进而提高结构的抗倒塌性能.  相似文献   

20.
为明确RC框架结构的抗地震倒塌破坏机理,控制其失效路径,基于课题组完成的1榀1/3比例的3层三跨RC平面框架低周循环加载试验,通过量化构件、楼层及结构3个层次的损伤破坏程度,研究了不同层次损伤破坏之间的相互联系以及不同类型构件损伤程度对结构整体抗震性能的影响。研究结果表明:结构发生倒塌破坏时,底层构件损伤程度普遍大于上部构件,第1~3层梁、柱端的损伤指数平均值分别为0.95、0.86、0.74和0.97、0.62、0.15,地震作用下结构的累积损伤是自下而上发展的;框架梁作为耗能构件,一般先于框架柱出现损伤,且损伤程度较大,沿楼层分布比较均匀,结构最终倒塌时第1层框架梁的损伤指数分别比第2、3层增加约8.89%和21.06%,框架柱的损伤破坏沿楼层分布相对集中,主要分布于结构底层,最终倒塌时第1层框架柱的损伤指数分别比第2、3层提高约26.56%和62.93%;结构在加载位移幅值较小时,主要依靠水平耗能构件消耗地震能量,随着位移幅值及循环次数的增加,竖向承力构件逐渐取代水平构件的耗能作用,框架梁、柱的整体损伤发展曲线分别呈上凸和上凹趋势;从结构能量耗储能力角度提出的整体损伤模型更符合结构抗震的本质,未知参数少,且计算结果能够较为准确地反映结构在不同性能水平下的损伤状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号