首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Helper T cells regulate type-2 innate immunity in vivo   总被引:19,自引:0,他引:19  
Shinkai K  Mohrs M  Locksley RM 《Nature》2002,420(6917):825-829
Type-2 immunity requires orchestration of innate and adaptive immune responses to protect mucosal sites from pathogens. Dysregulated type-2 responses result in allergy or asthma. T helper 2 (T(H)2) cells elaborate cytokines, such as interleukin (IL)-4, IL-5, IL-9 and IL-13, which work with toxic mediators of innate immune cells to establish environments that are inhospitable to helminth or arthropod invaders. The importance of T(H)2 cells in coordinating innate immune cells at sites of inflammation is not known. Here we show that polarized type-2 immune responses are initiated independently of adaptive immunity. In the absence of B and T cells, IL-4-expressing eosinophils were recruited to tissues of mice infected with the helminth Nippostrongylus brasiliensis, but eosinophils failed to degranulate. Reconstitution with CD4 T cells promoted accumulation of degranulated IL-4-expressing cells, but only if T cells were stimulated with cognate antigen. Degranulation correlated with tissue destruction, which was attenuated if eosinophils were depleted. Helper T cells confer antigen specificity on eosinophil cytotoxicity, but not cytokine responses, so defining a novel mechanism that focuses tissue injury at sites of immune challenge.  相似文献   

2.
Anthony RM  Kobayashi T  Wermeling F  Ravetch JV 《Nature》2011,475(7354):110-113
High-dose intravenous immunoglobulin is a widely used therapeutic preparation of highly purified immunoglobulin G (IgG) antibodies. It is administered at high doses (1-2 grams per kilogram) for the suppression of autoantibody-triggered inflammation in a variety of clinical settings. This anti-inflammatory activity of intravenous immunoglobulin is triggered by a minor population of IgG crystallizable fragments (Fcs), with glycans terminating in α2,6 sialic acids (sFc) that target myeloid regulatory cells expressing the lectin dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN; also known as CD209). Here, to characterize this response in detail, we generated humanized DC-SIGN mice (hDC-SIGN), and demonstrate that the anti-inflammatory activity of intravenous immunoglobulin can be recapitulated by the transfer of bone-marrow-derived sFc-treated hDC-SIGN(+) macrophages or dendritic cells into naive recipients. Furthermore, sFc administration results in the production of IL-33, which, in turn, induces expansion of IL-4-producing basophils that promote increased expression of the inhibitory Fc receptor FcγRIIB on effector macrophages. Systemic administration of the T(H)2 cytokines IL-33 or IL-4 upregulates FcγRIIB on macrophages, and suppresses serum-induced arthritis. Consistent with these results, transfer of IL-33-treated basophils suppressed induced arthritic inflammation. This novel DC-SIGN-T(H)2 pathway initiated by an endogenous ligand, sFc, provides an intrinsic mechanism for maintaining immune homeostasis that could be manipulated to provide therapeutic benefit in autoimmune diseases.  相似文献   

3.
The immune system consists of two evolutionarily different but closely related responses, innate immunity and adaptive immunity. Each of these responses has characteristic receptors-Toll-like receptors (TLRs) for innate immunity and antigen-specific receptors for adaptive immunity. Here we show that the caspase recruitment domain (CARD)-containing serine/threonine kinase Rip2 (also known as RICK, CARDIAK, CCK and Ripk2) transduces signals from receptors of both immune responses. Rip2 was recruited to TLR2 signalling complexes after ligand stimulation. Moreover, cytokine production in Rip2-deficient cells was reduced on stimulation of TLRs with lipopolysaccharide, peptidoglycan and double-stranded RNA, but not with bacterial DNA, indicating that Rip2 is downstream of TLR2/3/4 but not TLR9. Rip2-deficient cells were also hyporesponsive to signalling through interleukin (IL)-1 and IL-18 receptors, and deficient for signalling through Nod proteins-molecules also implicated in the innate immune response. Furthermore, Rip2-deficient T cells showed severely reduced NF-kappaB activation, IL-2 production and proliferation on T-cell-receptor (TCR) engagement, and impaired differentiation to T-helper subtype 1 (TH1) cells, indicating that Rip2 is required for optimal TCR signalling and T-cell differentiation. Rip2 is therefore a signal transducer and integrator of signals for both the innate and adaptive immune systems.  相似文献   

4.
Non-canonical inflammasome activation targets caspase-11   总被引:1,自引:0,他引:1  
Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 during the innate immune response. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4) is critical for caspase-1 activation and IL-1β production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11(-/-) mice, exhibited defects in IL-1β production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1(-/-) mice lack both caspase-11 and caspase-1. Interestingly, Casp11(-/-) macrophages secreted IL-1β normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1(-/-)Casp11(129mt/129mt) macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1β regardless of stimulus, confirming an essential role for caspase-1 in IL-1β production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.  相似文献   

5.
Chronic inflammation has long been associated with increased incidence of malignancy and similarities in the regulatory mechanisms have been suggested for more than a century. Infiltration of innate immune cells, elevated activities of matrix metalloproteases and increased angiogenesis and vasculature density are a few examples of the similarities between chronic and tumour-associated inflammation. Conversely, the elimination of early malignant lesions by immune surveillance, which relies on the cytotoxic activity of tumour-infiltrating T cells or intra-epithelial lymphocytes, is thought to be rate-limiting for the risk to develop cancer. Here we show a molecular connection between the rise in tumour-associated inflammation and a lack of tumour immune surveillance. Expression of the heterodimeric cytokine interleukin (IL)-23, but not of its close relative IL-12, is increased in human tumours. Expression of these cytokines antagonistically regulates local inflammatory responses in the tumour microenvironment and infiltration of intra-epithelial lymphocytes. Whereas IL-12 promotes infiltration of cytotoxic T cells, IL-23 promotes inflammatory responses such as upregulation of the matrix metalloprotease MMP9, and increases angiogenesis but reduces CD8 T-cell infiltration. Genetic deletion or antibody-mediated elimination of IL-23 leads to increased infiltration of cytotoxic T cells into the transformed tissue, rendering a protective effect against chemically induced carcinogenesis. Finally, transplanted tumours are growth-restricted in hosts depleted for IL-23 or in IL-23-receptor-deficient mice. Although many strategies for immune therapy of cancer attempt to stimulate an immune response against solid tumours, infiltration of effector cells into the tumour tissue often appears to be a critical hurdle. We show that IL-23 is an important molecular link between tumour-promoting pro-inflammatory processes and the failure of the adaptive immune surveillance to infiltrate tumours.  相似文献   

6.
T Roger  J David  M P Glauser  T Calandra 《Nature》2001,414(6866):920-924
  相似文献   

7.
Gu L  Tseng S  Horner RM  Tam C  Loda M  Rollins BJ 《Nature》2000,404(6776):407-411
Activated T lymphocytes differentiate into effector cells tailored to meet disparate challenges to host integrity. For example, type 1 and type 2 helper (T(H)1 and T(H)2) cells secrete cytokines that enhance cell-mediated and humoral immunity, respectively. The chemokine monocyte chemoattractant protein-1 (MCP-1) can stimulate interleukin-4 production and its overexpression is associated with defects in cell-mediated immunity, indicating that it might be involved in T(H)2 polarization. Here we show that MCP-1-deficient mice are unable to mount T(H)2 responses. Lymph node cells from immunized MCP-1(-/-) mice synthesize extremely low levels of interleukin-4, interleukin-5 and interleukin-10, but normal amounts of interferon-gamma and interleukin-2. Consequently, these mice do not accomplish the immunoglobulin subclass switch that is characteristic of T(H)2 responses and are resistant to Leishmania major. These effects are direct rather than due to abnormal cell migration, because the trafficking of naive T cells is undisturbed in MCP-1(-/-) mice despite the presence of MCP-1-expressing cells in secondary lymphoid organs of wild-type mice. Thus, MCP-1 influences both innate immunity, through effects on monocytes, and adaptive immunity, through control of T helper cell polarization.  相似文献   

8.
Chin AI  Dempsey PW  Bruhn K  Miller JF  Xu Y  Cheng G 《Nature》2002,416(6877):190-194
Host defences to microorganisms rely on a coordinated interplay between the innate and adaptive responses of immunity. Infection with intracellular bacteria triggers an immediate innate response requiring macrophages, neutrophils and natural killer cells, whereas subsequent activation of an adaptive response through development of T-helper subtype 1 cells (TH1) proceeds during persistent infection. To understand the physiological role of receptor-interacting protein 2 (Rip2), also known as RICK and CARDIAK, we generated mice with a targeted disruption of the gene coding for Rip2. Here we show that Rip2-deficient mice exhibit a profoundly decreased ability to defend against infection by the intracellular pathogen Listeria monocytogenes. Rip2-deficient macrophages infected with L. monocytogenes or treated with lipopolysaccharide (LPS) have decreased activation of NF-kappaB, whereas dominant negative Rip2 inhibited NF-kappaB activation mediated by Toll-like receptor 4 and Nod1. In vivo, Rip2-deficient mice were resistant to the lethal effects of LPS-induced endotoxic shock. Furthermore, Rip2 deficiency results in impaired interferon-gamma production in both TH1 and natural killer cells, attributed in part to defective interleukin-12-induced Stat4 activation. Our data reflect requirements for Rip2 in multiple pathways regulating immune and inflammatory responses.  相似文献   

9.
10.
GAGE-1 DNA肿瘤疫苗的构建及其抗肿瘤治疗效果的试验研究   总被引:1,自引:1,他引:0  
目的 观察G antigen 1 (GAGE-1)核酸疫苗pcDNA3.1+/GAGE-1免疫小鼠后,对表达GAGE-1抗原的B-16/GAGE-1肿瘤细胞的保护作用.方法 将C57 BL/6小鼠随机分为4组,与0、2、4周分别接种pcDNA3.1+/GAGE-1(实验组1)、pcDNA3.1+/GAGE-1/白介素2(实验组2)、pcDNA3.1+(对照组1),pcDNA3.1+/白介素2(对照组2)各三次.末次免疫后10d小鼠用于肿瘤细胞攻击试验:分别于左背部、右背部皮下种植B16肿瘤细胞、B16/GAGE-1肿瘤细胞.种植肿瘤细胞(荷瘤)后观察成瘤时间、肿瘤大小和荷瘤后小鼠的生存时间及生存率. 结果: pcDNA3.1+/GAGE-1/IL-2质粒免疫的小鼠在种植B16/GAGE-1、B16/pcDNA3.1+后,发现小鼠成瘤时间明显延迟,成瘤减小,生存期明显延长.结论:pcDNA3.1+/GAGE-1/IL-2 DNA 疫苗在体内能诱导出显著的GAGE-1特异性肿瘤免疫应答,且能抑制体内已经存在的少量肿瘤细胞的成瘤  相似文献   

11.
Immune recognition. A new receptor for beta-glucans.   总被引:26,自引:0,他引:26  
G D Brown  S Gordon 《Nature》2001,413(6851):36-37
The carbohydrate polymers known as beta-1,3-d-glucans exert potent effects on the immune system - stimulating antitumour and antimicrobial activity, for example - by binding to receptors on macrophages and other white blood cells and activating them. Although beta-glucans are known to bind to receptors, such as complement receptor 3 (ref. 1), there is evidence that another beta-glucan receptor is present on macrophages. Here we identify this unknown receptor as dectin-1 (ref. 2), a finding that provides new insights into the innate immune recognition of beta-glucans.  相似文献   

12.
The discovery of innate immune receptors and the emergence of liver immunology (high content of NK and NKT cells in liver) led to the second research summit in innate immunity since the finding of NK cells in the middle 1970s. Liver disease is one of the most dangerous threats to humans, and the progress in innate immunology and liver immunology made it possible to re-explain the cellular and mo- lecular immune mechanisms of liver disease. In the past ten years, we have found that innate recognition of hepatic NK and NKT subsets were involved in murine liver injury. We established a novel NK cell-dependent acute murine hepatitis model by activating Toll-like receptor-3 (TLR-3) with an injection of poly I:C, which may mimic mild viral hepatitis (such as Chronic Hepatitis B). We observed that a network of innate immune cells including NK, NKT and Kupffer cells is involved in liver immune injury in our established NK cell-dependent murine,model. We noted that TLR-3 on Kupffer cells activated by pretreatment with poly I: C might protect against bacterial toxin (LPS)-induced fulminant hepatitis by down-regulating TLR-4 function, while TLR-3 pre-activation of NK cells might reduce Con A-induced NKT cell-mediated fulminant hepatitis by blocking NKT cell recruitment to the liver. We also found that the oversensitivity to injury by immune stimulation in HBV (hepatitis B virus) transgenic mice (full HBV gene-tg or HBs-tg) correlated to the over-expression of Real, an NKG2D (natural killer cell group 2D) ligand of NK cells or CDld, a ligand of TCR-V14 of NKT cells, on HBV+ hepatocytes, which leads to an innate immune response against hepatocytes and is critical in liver immune injury and regeneration.  相似文献   

13.
To determine the pathological behavior of human hepatocarcinoma cells in the liver microenvironment of neonatal non-immunode-ficient mice, three human hepatocarcinoma cell lines (Bel7402, HepG2, and SK-Hep-1), traced by DiI, were transplanted into the intrahepatic or subcutaneous tissue of neonatal and adult Kunming mice. Histopathological observations showed that cells in the adult liver induced a severe immune response as early as the second day after the implantation, while the subcutaneous neoplasm underwent extensive necrosis by the end of the study. Only the cells injected into the neonatal liver underwent a delayed immunologic rejection in the organ microenvironment. These cells retained recognizable tumor features over the first seven days, and displayed an intrahepatic invasive pattern. The expression of tumor markers including alpha-fetoprotein and survivin was maintained. The quantitative ELISA for the expression patterns of IL-2 and IL-10 also confirmed that the intrahepatic immunity was non-susceptive during this period. The high serum alpha-fetoprotein level was inversely correlated with the change in immune response. Our study provided a bio-system for the research of immune responses to xenografts in the liver.  相似文献   

14.
The recognition and phagocytosis of microbes by macrophages is a principal aspect of innate immunity that is conserved from insects to humans. Drosophila melanogaster has circulating macrophages that phagocytose microbes similarly to mammalian macrophages, suggesting that insect macrophages can be used as a model to study cell-mediated innate immunity. We devised a double-stranded RNA interference-based screen in macrophage-like Drosophila S2 cells, and have defined 34 gene products involved in phagocytosis. These include proteins that participate in haemocyte development, vesicle transport, actin cytoskeleton regulation and a cell surface receptor. This receptor, Peptidoglycan recognition protein LC (PGRP-LC), is involved in phagocytosis of Gram-negative but not Gram-positive bacteria. Drosophila humoral immunity also distinguishes between Gram-negative and Gram-positive bacteria through the Imd and Toll pathways, respectively; however, a receptor for the Imd pathway has not been identified. Here we show that PGRP-LC is important for antibacterial peptide synthesis induced by Escherichia coli both in vitro and in vivo. Furthermore, totem mutants, which fail to express PGRP-LC, are susceptible to Gram-negative (E. coli), but not Gram-positive, bacterial infection. Our results demonstrate that PGRP-LC is an essential component for recognition and signalling of Gram-negative bacteria. Furthermore, this functional genomic approach is likely to have applications beyond phagocytosis.  相似文献   

15.
OBJECTIVE: To investigate the effect of interleukin-18 (IL-18) on immune response induced by plasmid encoding hepatitis B virus middle protein antigen and to explore new strategies for prophylactic and therapeutic HBV DNA vaccines. METHODS: BALB/c mice were immunized with pCMV-M alone or co-immunized with pcDNA3-18 and pCMV-M and then their sera were collected for analysing anti-HBsAg antibody by ELISA; splenocytes were isolated for detecting specific CTL response and cytokine assay in vitro. RESULTS: The anti-HBs antibody level of mice co-immunized with pcDNA3-18 and pCMV-M was slightly higher than that of mice immunized with pCMV-M alone, but there was not significantly different (P>0.05). Compared with mice injected with pCMV-M, the specific CTL cytotoxity activity of mice immunized with pcDNA3-18 and pCMV-M was significantly enhanced (P<0.05) and the level of IFN-Gamma in supernatant of splenocytes cul-tured with HBsAg in vitro was significantly elevated (P<0.05) while the level of IL-4 had no significant difference (P>0.05). CONCLUSION: The plasmid encoding IL-18 together with HBV M gene DNA vaccines may enhance specific TH1 cells and CTL cellular immune response induced in mice, so that IL-18 is a promising immune adjuvant.  相似文献   

16.
Mast cells have a central role in allergic diseases mediated by specific immunoglobulin E antibody responses to allergens. The binding of IgE to the high-affinity receptor for IgE (Fc epsilon R) on mast cells and basophils enables these cells to react specifically to allergens. Such contact leads to the activation of mast cells and the release of histamine and other pharmacological mediators, causing an immediate hypersensitivity and acute inflammatory reactions, accompanied by the development of allergic symptoms. Here we show that Fc epsilon R-mediated activation of murine mast cells results in the production of the haemopoietic growth factors granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3). IL-3 and GM-CSF, in addition to their role in bone marrow haemopoiesis, also influence inflammation as they have the capacity to recruit, prime and activate inflammatory cells such as neutrophils, macrophages and eosinophils. Secretion of these factors by mast cells in response to allergens may therefore have an important role in local tissue defense.  相似文献   

17.
研究牡蛎寡肽对免疫低下小鼠免疫功能的调节作用。采用腹腔注射环磷酰胺(CTX)建立免疫低下小鼠模型,研究不同剂量牡蛎寡肽对小鼠免疫器官脏器指数、脾淋巴细胞转化增殖情况、NK细胞活性、小鼠体液免疫、巨噬细胞吞噬能力、血清TNF-、IL-6和溶血素水平的影响。结果显示,与免疫抑制模型组小鼠相比,牡蛎寡肽能够显著提高脾淋巴细胞增殖能力、NK细胞活性、廓清指数K、吞噬指数a、吞噬中性红能力、TNF-、IL-6、溶血素水平和脾淋巴细胞CD3+4T淋巴细胞亚群及CD3+8T淋巴细胞亚群分布(P0.05),而对小鼠的肝、脾脏指数影响不显著。结果表明牡蛎寡肽能够提高由CTX引起的免疫低下模型小鼠的细胞免疫、体液免疫及非特异性免疫功能,对小鼠的免疫功能具有正面调控的作用。  相似文献   

18.
本文采用胶体几丁质为底物,研究了红曲霉液态发酵产几丁质酶.研究结果表明:胶体几丁质的添加能有效诱导红曲霉合成几丁质酶.在培养基中添加0.8%(W/V)胶体几丁质的同时,添加0.4%(W/V)葡萄糖,有利于红曲霉的生长以及几丁质酶的合成,发酵48h几丁质酶活力达到最高的0.3504U/mL.  相似文献   

19.
Innate immunity is a fundamental defence response that depends on evolutionarily conserved pattern recognition receptors for sensing infections or danger signals. Nucleotide-binding and oligomerization domain (NOD) proteins are cytosolic pattern-recognition receptors of paramount importance in the intestine, and their dysregulation is associated with inflammatory bowel disease. They sense peptidoglycans from commensal microorganisms and pathogens and coordinate signalling events that culminate in the induction of inflammation and anti-microbial responses. However, the signalling mechanisms involved in this process are not fully understood. Here, using genome-wide RNA interference, we identify candidate genes that modulate the NOD1 inflammatory response in intestinal epithelial cells. Our results reveal a significant crosstalk between innate immunity and apoptosis and identify BID, a BCL2 family protein, as a critical component of the inflammatory response. Colonocytes depleted of BID or macrophages from Bid(-/-) mice are markedly defective in cytokine production in response to NOD activation. Furthermore, Bid(-/-) mice are unresponsive to local or systemic exposure to NOD agonists or their protective effect in experimental colitis. Mechanistically, BID interacts with NOD1, NOD2 and the IκB kinase (IKK) complex, impacting NF-κB and extracellular signal-regulated kinase (ERK) signalling. Our results define a novel role of BID in inflammation and immunity independent of its apoptotic function, furthering the mounting evidence of evolutionary conservation between the mechanisms of apoptosis and immunity.  相似文献   

20.
Bouskra D  Brézillon C  Bérard M  Werts C  Varona R  Boneca IG  Eberl G 《Nature》2008,456(7221):507-510
Intestinal homeostasis is critical for efficient energy extraction from food and protection from pathogens. Its disruption can lead to an array of severe illnesses with major impacts on public health, such as inflammatory bowel disease characterized by self-destructive intestinal immunity. However, the mechanisms regulating the equilibrium between the large bacterial flora and the immune system remain unclear. Intestinal lymphoid tissues generate flora-reactive IgA-producing B cells, and include Peyer's patches and mesenteric lymph nodes, as well as numerous isolated lymphoid follicles (ILFs). Here we show that peptidoglycan from Gram-negative bacteria is necessary and sufficient to induce the genesis of ILFs in mice through recognition by the NOD1 (nucleotide-binding oligomerization domain containing 1) innate receptor in epithelial cells, and beta-defensin 3- and CCL20-mediated signalling through the chemokine receptor CCR6. Maturation of ILFs into large B-cell clusters requires subsequent detection of bacteria by toll-like receptors. In the absence of ILFs, the composition of the intestinal bacterial community is profoundly altered. Our results demonstrate that intestinal bacterial commensals and the immune system communicate through an innate detection system to generate adaptive lymphoid tissues and maintain intestinal homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号